Chapitre 5

Calcul matriciel

5.1 Rappels de 1ère année

Définition 13. n et p sont des entiers naturels. Une matrice A de dimension (n,p) (ou $n \times p$) est un tableau de nombres à n lignes et p colonnes. L'élément a_{ij} , avec $1 \leqslant i \leqslant n$ et $1 \leqslant j \leqslant p$, se trouve sur la $i^{\text{ème}}$ ligne et la $j^{\text{ème}}$ colonne.

$$A = \begin{cases} & \text{col } 1 & \text{col } 2 & \dots & \text{col } j & \dots & \text{col } p \\ & \text{ligne } 1 & a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1p} \\ & a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2p} \\ & \vdots & \vdots & & \vdots & & \vdots \\ & a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{ip} \\ & \dots & \dots & \dots & \dots & \dots \\ & a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{np} \end{cases}$$

Exemples

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 est une matrice de dimension 2×3 (2 lignes et 3 colonnes).

 $C = \begin{pmatrix} 10 & 5 & 4 \end{pmatrix}$ est de dimension 1×3 ; c'est une matrice-ligne.

$$D = \begin{pmatrix} 5 \\ 4 \\ 6 \end{pmatrix}$$
 est une matrice-colonne de dimension 3×1 .

$$E = \begin{pmatrix} -2 & 5,1 & 0 \\ 8 & 1 & 4 \\ -\sqrt{2} & 0 & 6 \end{pmatrix} \text{ est une matrice carr\'ee de dimension } 3 \times 3.$$

5.1.1 Addition

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} = \begin{pmatrix} 8 & 10 & 12 \\ 14 & 16 & 18 \end{pmatrix}$$
$$\begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix} + \begin{pmatrix} 1 \\ -5 \\ 9 \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \\ 13 \end{pmatrix}$$

5.1.2 Multiplication par un nombre réel

$$2\begin{pmatrix}1&2&3\\4&5&6\end{pmatrix} = \begin{pmatrix}2&4&6\\8&10&12\end{pmatrix}$$

$$5(-1 \ 2 \ 4) = (-5 \ 10 \ 20)$$

5.1.3 Multiplication de deux matrices

La multiplication d'une matrice A de taille $n \times p$ par B de taille $p \times m$ donne une matrice de taille $n \times m$.

L'élément c_{ij} (ligne i, colonne j) est obtenu en « multipliant la ligne i par la colonne j ».

Exemples:

$$\begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & 4 \end{pmatrix} \times \begin{pmatrix} -1 & 0 \\ 3 & 5 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 10 \\ 3 & 16 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 8 & 12 \\ 5 & 10 & 15 \\ 6 & 12 & 18 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \times \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 1 \times 4 + 2 \times 5 + 3 \times 6 = 32$$

Si on multiplie par la matrice identité (ou unité) $I_2: \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{I_2} \times \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$.

Remarques:

- En général, $A \times B \neq B \times A$.
- La multiplication est associative : $A \times (B \times C) = (A \times B) \times C = A \times B \times C$.
- $A \times A$ est notée $A^2 \dots$

5.1.4 Inverse d'une matrice

A étant carrée $n \times n$, une matrice B telle que $A \times B$ égale la matrice identité I_n est appelée matrice inverse de A et est notée A^{-1} .

Exemple:

$$\underbrace{\begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}}_{A} \times \underbrace{\begin{pmatrix} 0.8 & -0.2 \\ -0.6 & 0.4 \end{pmatrix}}_{A^{-1}} = \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{I_{2}}$$

Résolution de systèmes linéaires

Le système

$$\begin{cases} 2x + y = 7 \\ 3x + 4y = 8 \end{cases}$$

s'écrit sous forme matricielle :

$$AX = C$$

avec
$$A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$$
, $X = \begin{pmatrix} x \\ y \end{pmatrix}$ et $C = \begin{pmatrix} 7 \\ 8 \end{pmatrix}$.

En multipliant (à gauche!) les deux membres de AX = C par A^{-1} , on obtient

$$A^{-1} \times AX = A^{-1} \times C$$

soit

$$I_2X = A^{-1} \times C$$

$$X = A^{-1} \times C$$

Dans notre exemple,

$$X = \begin{pmatrix} 0.8 & -0.2 \\ -0.6 & 0.4 \end{pmatrix} \times \begin{pmatrix} 7 \\ 8 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$

C'est très pratique pour les systèmes 3×3 ou de taille plus grande, car les calculatrices et les ordinateurs calculent très rapidement $A^{-1} \times C$.

Exercice 5.1. On considère les matrices $A = [a_{ij}]$ et $B = [b_{ij}]$, carrées, d'ordre 3, définies par $a_{ij} = i$ et $b_{ij} = i - j$. Écrire ces matrices.

Exercice 5.2. On considère la matrice $A = [a_{ij}]$ à 3 lignes et 4 colonnes telle que $a_{ij} = Max(i,j)$ et $B = [b_{ij}]$ la matrice à 2 lignes et 5 colonnes telle que $b_{ij} = i \times j$. Écrire ces matrices.

Exercice 5.3. On considère les matrices

$$A = \begin{pmatrix} 1 & 2 & x \end{pmatrix} \qquad B = \begin{pmatrix} y \\ 5 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 1 \\ b & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 2 & 1 \\ -3 & 10 \end{pmatrix} \qquad E = \begin{pmatrix} -1 & 2 & 3 \\ -1 & 4 & 0 \\ 0 & 2 & 5 \end{pmatrix}$$

Effectuer les opérations suivantes.

$$2C + 3D$$
 ; $D \times B$; $A \times E$

Calculer
$$M^2$$
 (c'est-à-dire $M\times M$) avec $M=\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

Exercice 5.4. 1. On considère les matrices $R = \begin{pmatrix} 1 & 1 \\ 0, 8 & 1, 2 \end{pmatrix}$, $X = \begin{pmatrix} s \\ c \end{pmatrix}$ et $T = \begin{pmatrix} 550 \\ 540 \end{pmatrix}$.

Calculer le produit matriciel $R \times X$ (en fonction de s et c).

- 2. Calculer les produits matriciels $P \times R$ et $R \times P$ (montrer le calcul d'un des coefficients), avec $P = \begin{pmatrix} 3 & -2, 5 \\ -2 & 2, 5 \end{pmatrix}$.
- 3. Montrer que l'égalité RX = T est équivalente à X = PT.
- 4. Lors d'une campagne de marketing une entreprise distribue un stylo ou un porte-clés ; il en coûte à l'entreprise 0,80 € par stylo et 1,20 € par porte-clés distribué.
 À la fin de la journée l'entreprise a distribué 550 abjets et cela lui a coûté 540 €.

À la fin de la journée l'entreprise a distribué 550 objets et cela lui a coûté 540 \in . On cherche le nombre s de stylos et le nombre c de porte-clés distribués.

- (a) Écrire un système de deux équations à deux inconnues traduisant cette situation.
- (b) Résoudre le problème à l'aide des questions précédentes.

Exercice 5.5. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. On suppose que $ad - bc \neq 0$.

- 1. Montrer que la matrice $B = \frac{1}{ad bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ est la matrice inverse de A.
- 2. En déduire l'inverse de la matrice $\begin{pmatrix} 7 & 3 \\ 12 & 8 \end{pmatrix}$.

Exercice 5.6. Résoudre à l'aide des matrices les systèmes

$$\begin{cases} 2x - 3y = 5 \\ -3x + 5y = -2 \end{cases} \qquad \begin{cases} 5x - 3z = 4 \\ 3x + 4y + z = 2 \\ x - y - z = 2 \end{cases}$$

Exercice 5.7. On considère les matrices

$$A = \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix} \quad \text{et} \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 1. Démontrer que $A^2 3A + 2I = O$ (O est la matrice dont les coefficients sont nuls).
- 2. En remarquant que A=AI, vérifier que cette égalité peut s'écrire $I=A\left(-\frac{1}{2}A+\frac{3}{2}I\right)$.
- 3. En déduire la matrice A' telle que $A \times A' = I$.

Exercice 5.8. Cryptographie

On veut transmettre un message secret en le codant de la façon suivante : on associe un nombre à chaque lettre du message grâce au tableau suivant, tableau public, à la disposition de tout le monde.

	1	2	3	4	5	6	7	8	9
0	A	В	С	D	E	F	G	Н	I
1	J	K	L	M	N	О	Р	Q	R
2	S	Т	U	V	W	X	Y	Z	0
3	1	2	3	4	5	6	7	8	9
4	%	,	,	?	;		:	!	espace

Par exemple, la lettre U est codée par le nombre 23.

- 1. Le message dont le texte est « top secret » donne 22 16 17 49 21 5 3 19 5 22, que l'on représente par une matrice de dimension 2×5 , $M = \begin{pmatrix} 22 & 16 & 17 & 49 & 21 \\ 5 & 3 & 19 & 5 & 22 \end{pmatrix}$. On choisit toujours une dimension $2 \times p$, en ajoutant, si besoin, un espace à la fin du message. Ce tableau étant public, on ne peut pas envoyer la matrice M, décodable par tout le monde. On donne donc à la personne réceptrice du message une clé privée constituée d'une matrice P de dimension 2×2 , et on lui envoie la matrice $C = P \times M$. On suppose que $P = \begin{pmatrix} 3 & 1 \\ 4 & -2 \end{pmatrix}$. Calculer la matrice C.
- 2. Quelles matrices obtient-on en multipliant chaque membre de l'égalité $C=P\times M$ par la matrice P^{-1} ?
- 3. Proposer un moyen de décoder un message M à partir du message codé C.
- 4. Vous recevez un message codé par la matrice de dimension 2×9

$$C = \begin{pmatrix} 11 & 78 & 25 & 121 & 55 & 130 & 154 & 24 & 131 \\ -2 & 34 & -40 & -2 & 50 & 170 & 182 & -18 & 158 \end{pmatrix}$$

À l'aide d'une calculatrice ou d'un tableur, décoder le message en utilisant le procédé obtenu à la question précédente.

Exercice 5.9. Combien d'additions et de multiplications effectue-t-on pour calculer le produit d'une matrice 10×7 (10 lignes et 7 colonnes) par une matrice 7×2 (7 lignes et 2 colonnes)?

Exercice 5.10. Deux systèmes très semblables mais des solutions très éloignées ¹.

$$\begin{cases} x - y = 1 \\ x - 1,00001y = 0 \end{cases}$$

et

$$\begin{cases} x - y = 1 \\ x - 0,99999y = 0 \end{cases}$$

^{1.} Luc De Brabandere et Christophe Ribesse. *Petite philosophie des mathématiques vagabondes*. Paris : Eyrolles, 2011, 1 vol. (149 p.) ISBN : 978-2-212-55240-9, p. 117