{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Algorithmique : suites" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On considère l'algorithme : \n", "

\n", "$n \\leftarrow 0$
\n", "$u \\leftarrow 5$
\n", "Tant que $n < 4$
\n", " $\\qquad u \\leftarrow u \\times 3 + 2$
\n", " $\\qquad n \\leftarrow n+1$
\n", "

\n", "\n", "Quelle est la valeur de la variable $u$ à la fin ? de $n$ ? (vous pouvez le traduire en Python ci-dessous pour vérifier) \n", "\n", "*Réponse : $\\dots$*\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On considère l'algorithme :\n", "\n", "

\n", "$n \\leftarrow 1$
\n", "$S \\leftarrow 0$
\n", "Tant que $n <5$
\n", " $\\qquad S \\leftarrow S + \\dfrac{1}{n}$
\n", " $\\qquad n \\leftarrow n+1$
\n", "

\n", "\n", "\n", "Quelle est la valeur de la variable $S$ à la fin ? (vous pouvez le traduire en Python ci-dessous pour vérifier) \n", "\n", "*Réponse : $\\dots$*" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ecrire un programme qui calcule les 10 premiers termes de la suite $(u_n)$ définie par $u_0 = 0.1$ et, pour tout entier naturel $n$, $u_{n+1} = 5u_n$." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Pour la suite précédente, écrire un programme qui calcule la somme des 10 premiers termes : $u_0+u_1+u_2+ \\dots + u_{9}$." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On considère la suite $(v_n)$ définie par $v_0 = 500$ et, pour tout entier naturel $n$, $v_{n+1} = \\sqrt{v_n + 2}$. \n", "Calculer $v_{1}$, $v_{5}$, $v_{10}$. Qu'observe-t-on ?\n", "\n", "*Réponse : * $v_1 = \\qquad \\qquad$ ; $v_5 = \\qquad \\qquad$ ; $v_{10} = \\qquad \\qquad$" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from math import sqrt\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On considère l'algorithme :\n", "\n", "

\n", "$n \\leftarrow 0$
\n", "$v \\leftarrow 500$
\n", "$e \\leftarrow 1$
\n", "Tant que $e > 0.000001$
\n", " $\\qquad v \\leftarrow \\sqrt{v + 2}$
\n", " $\\qquad e \\leftarrow |v - 2 |$
\n", " $\\qquad n \\leftarrow n+1$
\n", "

\n", "\n", "\n", "Quelle est la valeur de la variable $n$ à la fin ? de $v$ ? de $e$ ? A quoi sert cet algorithme ? (vous pouvez le traduire en Python ci-dessous pour vérifier) \n", "\n", "*Réponse : *\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from math import sqrt\n", "# la valeur absolue de x s'obtient par abs(x)\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "On considère la suite $(w_n)$ définie par $w_0 = 2$, $w_1 = 3$ et, pour tout entier naturel $n \\geqslant 1$, par $w_{n+1}= (n+1)w_{n-1} - n^2$. \n", "Ecrire un programme qui calcule la somme $w_0+ w_1 + w_2 + \\dots + w_{50}$." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }