{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Données" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "x=[1,2,3,4,5,6,7,8,9,10]\n", "y=[1.48,8.58,16.44,24.53,29.96,36.97,48.91,55.70,55.70,70.11]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Nuage de points" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAXl0lEQVR4nO3df/BddX3n8efLEPUriF+QwCSBNOoyUVoXYr9aLFqr2I2urWTp4o9dndRhN2unCthuXNI//DHTGXBjae2u2ykjalzwB8UYWFeJTKrD6ihrIJQomGJdRJKURCH8/FZCfO8f90S+3y9JuN/wPfd+k/N8zNw593zuPee8cyd53ZPPOffzSVUhSeqOZwy7AEnSYBn8ktQxBr8kdYzBL0kdY/BLUscY/JLUMQa/JHWMwa/OSvLwhMcvkoxPWP/3ST6U5Moki6a8t5I8MmH91Uk+neSxZv2+JDckefGEY/1Bkr1T9vNwkgXD/AzUTQa/Oquqjtn3AO4Gfm9C21UT3nf3lPcCnD6h7f80bf+1eX0hsA24Ysohvz1xP81je9t/Tmkqg1+aYVU1DlwNnDHsWqT9MfilGZbkaODtwA+HXYu0Pwa/NHP+c5LdwEPAq4B3Tnn9zCS7Jzz+cfAlSga/NJM+WlWjwGJgHFgy5fXvVNXohMeLBl6hhMEvzbiquhu4EPhYkpFh1yNNZfBLLaiqG4DtwMph1yJNZfBL7VkDvD/Js5r1V+7nPv6XD7NAdVOciEWSusUzfknqGINfkjrG4JekjjH4Jaljjhp2Af044YQTavHixcMuQ5IOKzfffPNPq2re1PbDIvgXL17Mpk2bhl2GJB1Wkvx4f+129UhSxxj8ktQxBr8kdYzBL0kdY/BLUse0dldPkiXAFyY0vRD4APCZpn0xcBfwlqq6v606JOlwtH7zNtZs2Mr23eMsGB1h1bIlLF+6cEb23doZf1VtraozquoM4NeBR4EvARcDG6vqVGBjsy5JaqzfvI3V67awbfc4BWzbPc7qdVtYv3nbjOx/UF09ZwP/WFU/Bs4B1jbta4HlA6pBkg4LazZsZXzP3klt43v2smbD1hnZ/6CC/23A55rnJ1XVDoBmeeKAapCkw8L23ePTap+u1oM/yTOBNwN/O83tVibZlGTTrl272ilOkmahBaP7n7HzQO3TNYgz/jcCt1TVvc36vUnmAzTLnfvbqKour6qxqhqbN+9JQ01I0hFr1bIljMydM6ltZO4cVi1bMiP7H0Twv50nunkArgNWNM9XANcOoAZJOmwsX7qQS859KQtHRwiwcHSES8596Yzd1dPq1ItJngP8BHhhVT3QtD0fuBpYBNwNnFdV9x1sP2NjY+UgbZI0PUlurqqxqe2tjs5ZVY8Cz5/S9jN6d/lIkobAX+5KUscY/JLUMQa/JHWMwS9JHWPwS1LHGPyS1DEGvyR1jMEvSR1j8EtSxxj8ktQxBr8kdYzBL0kdY/BLUscY/JLUMQa/JHWMwS9JHWPwS1LHGPyS1DEGvyR1jMEvSR3TavAnGU1yTZIfJLkjySuTHJ/khiR3Nsvj2qxBkjRZ22f8HwOur6oXA6cDdwAXAxur6lRgY7MuSRqQ1oI/ybHAbwFXAFTVY1W1GzgHWNu8bS2wvK0aJElP1uYZ/wuBXcCnkmxO8okkRwMnVdUOgGZ54v42TrIyyaYkm3bt2tVimZLULW0G/1HAy4C/rqqlwCNMo1unqi6vqrGqGps3b15bNUpS57QZ/PcA91TVTc36NfS+CO5NMh+gWe5ssQZJ0hStBX9V/RPwkyRLmqazgduB64AVTdsK4Nq2apAkPdlRLe//vcBVSZ4J/Ah4F70vm6uTnA/cDZzXcg2SpAlaDf6quhUY289LZ7d5XEnSgfnLXUnqGINfkjrG4JekjjH4Jalj2r6rR5L6sn7zNtZs2Mr23eMsGB1h1bIlLF+6sLN1tMnglzR06zdvY/W6LYzv2QvAtt3jrF63BWCgoTtb6mibXT2Shm7Nhq2/DNt9xvfsZc2GrZ2so20Gv6Sh2757fFrtR3odbTP4JQ3dgtGRabUf6XW0zeCXNHSrli1hZO6cSW0jc+ewatmSA2xxZNfRNi/uShq6fRdOh303zWypo22pqmHX8JTGxsZq06ZNwy5Dkg4rSW6uqieNl2ZXjyR1jMEvSR1j8EtSxxj8ktQxBr8kdYzBL0kdY/BLUscY/JLUMa3+cjfJXcBDwF7g8aoaS3I88AVgMXAX8Jaqur/NOiRJTxjEGf9rq+qMCb8euxjYWFWnAhubdUnSgAyjq+ccYG3zfC2wfAg1SFJntT1IWwFfS1LA31TV5cBJVbUDoKp2JDlxfxsmWQmsBFi0aFHLZUrd1YWpBjVZ28F/VlVtb8L9hiQ/6HfD5kvicugN0tZWgVKXdWWqQU3WaldPVW1vljuBLwGvAO5NMh+gWe5sswZJB9aVqQY1WWvBn+ToJM/d9xz4V8D3gOuAFc3bVgDXtlWDpIPrylSDmqzNrp6TgC8l2Xecz1bV9Um+C1yd5HzgbuC8FmuQdBALRkfYtp+QP9KmGtRkrQV/Vf0IOH0/7T8Dzm7ruJL6t2rZkkl9/HBkTjWoyZx6Ueqwrkw1qMkMfqnjli9daNB3jGP1SFLHGPyS1DEGvyR1jMEvSR1j8EtSxxj8ktQxBr8kdYzBL0kdY/BLUsdMO/iTPCPJsW0UI0lqX1/Bn+SzSY5thle+HdiaZFW7pUmS2tDvGf9pVfUgvflxvwIsAt7ZWlWSpNb0G/xzk8ylF/zXVtUeevPpSpIOM/0G/98AdwFHAzcm+RXgwbaKkiS1p69hmavqr4C/mtD04ySvbackSVKb+r24e1KSK5J8tVk/jSfmzZUkHUb67er5NLABWNCs/wNwURsFSZLa1W/wn1BVVwO/AKiqx4G9B99EkjQb9Rv8jyR5Ps2dPEnOBB7oZ8Mkc5JsTvLlZv34JDckubNZHndIlUuSDkm/wf/HwHXAi5J8C/gM8N4+t70QuGPC+sXAxqo6FdjYrEuSBqSv4K+qW4DXAL8J/CfgV6vqtqfaLsnJwJuAT0xoPgdY2zxfS++3AZKkAen3rp7n0Dszv6iqvgcsTvK7fWz6l8D7aa4NNE6qqh0AzfLEAxxzZZJNSTbt2rWrnzIlSX3ot6vnU8BjwCub9XuAPzvYBs0Xw86quvlQCquqy6tqrKrG5s2bdyi7kCTtR18/4AJeVFVvTfJ2gKoaT5Kn2OYs4M1J/jXwbODYJFcC9yaZX1U7kswHdh5y9ZKkaev3jP+xJCM8cVfPi4CfH2yDqlpdVSdX1WLgbcDfVdU76F0k3vfjrxXAtYdSuCTp0PR7xv9B4HrglCRX0Tub/4NDPOalwNVJzgfuBs47xP1Ikg5Bv2P13JDkFuBMIMCFVfXTfg9SVd8AvtE8/xlw9rQrlSTNiH7P+KHXT39/s81pSaiqG9spSzryrd+8jTUbtrJ99zgLRkdYtWwJy5cuHHZZ6oC+gj/JR4C3At/niVszCzD4pUOwfvM2Vq/bwvie3sgn23aPs3rdFgDDX63r94x/ObCkqg56QVdSf9Zs2PrL0N9nfM9e1mzYavCrdf3e1fMjYG6bhUhdsn33+LTapZnU7xn/o8CtSTYy4TbOqrqglaqkI9yC0RG27SfkF4yODKEadU2/wX9d85A0A1YtWzKpjx9gZO4cVi1bMsSq1BX93s659qnfJalf+/rxvatHw9DvXT1nAR8CfqXZJkBV1QvbK006si1futCg11D029VzBfA+4GaceUuSDmv9Bv8DVfXVViuRJA1Ev8H/9SRrgHVMvqvnllaqkiS1pt/g/41mOTahrYDXzWw5kqS29XtXz2vbLkSSNBj9Tr34vCSX7ZsKMcmfJ3le28VJkmZev0M2fBJ4CHhL83iQ3nSMkqTDzHSmXvz9CesfTnJrGwVJktrV7xn/eJJX7VtpftDlaFKSdBjq94z/D4G1Tb9+gPs49KkXJUlD1O9dPbcCpyc5tll/sNWqJEmtOWjwJ/njA7QDUFWXtVCTJKlFT3XG/9xmuQR4OU8Mzfx7PMW0i0me3bznWc1xrqmqDyY5HvgCsBi4C3hLVd1/KMVLh8K5btV1Bw3+qvowQJKvAS+rqoea9Q8Bf/sU+/458LqqejjJXOCbSb4KnAtsrKpLk1wMXAz8l6f3x5D641y3Uv939SwCHpuw/hi9M/YDqp6Hm9W5zaOAc4B94/uvpTefrzQQB5vrVuqKfu/q+Z/A/03yJXrh/W94IrwPKMkcekM5/wvg41V1U5KTqmoHQFXtSHLiAbZdCawEWLRoUZ9lSgfnXLdSH2f86V3J/QzwLuB+YDfwrqq65Km2raq9VXUGcDLwiiS/1m9hVXV5VY1V1di8efP63Uw6qAPNaetct+qSpwz+qipgfVXdUlUfax6bp3OQqtoNfAN4A3BvkvkAzXLn9MuWDs2qZUsYmTtnUptz3apr+u3j/06Sl09nx0nmJRltno8Arwd+QO/OoBXN21YA105nv9LTsXzpQi4596UsHB0hwMLRES4596Ve2FWn9NvH/1rg3UnuAh7hiTl3/+VBtplP79e+c+h9wVxdVV9O8m3g6iTnA3cD5x1y9dIhcK5bdV2/wf9G4Djg1c36jfT6+g+oqm4Dlu6n/WfA2dOoUZI0g/rt6llO786eE4B5zfM3t1WUJKk9/Z7xnw+cWVWPACT5CPBt4L+1VZgkqR39nvEHmPirl71NmyTpMNPvGf+ngJuaH3BBr+vninZKkiS1qd9hmS9L8g3gVfTO9N813Xv5JUmzQ79n/FTVLcAtLdYiSRqAfvv4JUlHiL7P+KWZ4Fj40vAZ/BoYx8KXZge7ejQwjoUvzQ4GvwbGsfCl2cHg18A4Fr40Oxj8GhjHwpdmBy/uamD2XcD1rh5puAx+DZRj4UvDZ1ePJHWMwS9JHWPwS1LHGPyS1DGtBX+SU5J8PckdSb6f5MKm/fgkNyS5s1ke11YNkqQna/OM/3HgT6rqJcCZwB8lOQ24GNhYVacCG5t1SdKAtBb8VbWjGcOfqnoIuANYCJwDrG3etpbebF6SpAEZSB9/ksXAUuAm4KSq2gG9LwfgxEHUIEnqaT34kxwDfBG4qKoenMZ2K5NsSrJp165d7RUoSR3TavAnmUsv9K+qqnVN871J5jevzwd27m/bqrq8qsaqamzevHltlilJndLmXT0BrgDuqKrLJrx0HbCieb4CuLatGiRJT9bmWD1nAe8EtiS5tWn7U+BS4Ook5wN3A+e1WIMkaYrWgr+qvgnkAC+f3dZxJUkH5y93JaljDH5J6hjH4++I9Zu3OQGKJMDg74T1m7exet0WxvfsBWDb7nFWr9sCYPhLHWRXTwes2bD1l6G/z/ievazZsHVIFUkaJoO/A7bvHp9Wu6Qjm8HfAQtGR6bVLunIZvB3wKplSxiZO2dS28jcOaxatmRIFUkaJi/udsC+C7je1SMJDP7OWL50oUEvCbCrR5I6x+CXpI4x+CWpYwx+SeoYg1+SOsbgl6SOMfglqWMMfknqGINfkjrG4Jekjmkt+JN8MsnOJN+b0HZ8khuS3Nksj2vr+JKk/WvzjP/TwBumtF0MbKyqU4GNzbokaYBaC/6quhG4b0rzOcDa5vlaYHlbx5ck7d+g+/hPqqodAM3yxAO9McnKJJuSbNq1a9fACpSkI92sHZa5qi4HLgcYGxurIZdzyNZv3uY4+JJmlUEH/71J5lfVjiTzgZ0DPv5Ard+8jdXrtvxyovNtu8dZvW4LgOEvaWgG3dVzHbCieb4CuHbAxx+oNRu2/jL09xnfs5c1G7YOqSJJavd2zs8B3waWJLknyfnApcDvJLkT+J1m/Yi1fff4tNolaRBa6+qpqrcf4KWz2zrmbLNgdIRt+wn5BaMjQ6hGknr85W6LVi1bwsjcOZPaRubOYdWyJUOqSJJm8V09R4J9F3C9q0fSbGLwt2z50oUGvaRZxa4eSeoYg1+SOsbgl6SOMfglqWMMfknqGINfkjrG4JekjjH4JaljDH5J6hiDX5I6xuCXpI4x+CWpYwx+SeqYI3Z0Tic5l6T9OyKD30nOJenAjsiuHic5l6QDOyKD30nOJenAhhL8Sd6QZGuSHya5eKb3f6DJzJ3kXJKGEPxJ5gAfB94InAa8PclpM3kMJzmXpAMbxsXdVwA/rKofAST5PHAOcPtMHcBJziXpwIYR/AuBn0xYvwf4jalvSrISWAmwaNGiaR/ESc4laf+G0cef/bTVkxqqLq+qsaoamzdv3gDKkqRuGEbw3wOcMmH9ZGD7EOqQpE4aRvB/Fzg1yQuSPBN4G3DdEOqQpE4aeB9/VT2e5D3ABmAO8Mmq+v6g65CkrhrKkA1V9RXgK8M4tiR1XaqedF111kmyC/jxsOt4mk4AfjrsImYRP48n+FlM5ucx2dP5PH6lqp50d8xhEfxHgiSbqmps2HXMFn4eT/CzmMzPY7I2Po8jcqweSdKBGfyS1DEG/+BcPuwCZhk/jyf4WUzm5zHZjH8e9vFLUsd4xi9JHWPwS1LHGPwtS3JKkq8nuSPJ95NcOOyahi3JnCSbk3x52LUMW5LRJNck+UHzd+SVw65pWJK8r/k38r0kn0vy7GHXNEhJPplkZ5LvTWg7PskNSe5slsfNxLEM/vY9DvxJVb0EOBP4o5meeOYwdCFwx7CLmCU+BlxfVS8GTqejn0uShcAFwFhV/Rq94VzeNtyqBu7TwBumtF0MbKyqU4GNzfrTZvC3rKp2VNUtzfOH6P3D7uxEAUlOBt4EfGLYtQxbkmOB3wKuAKiqx6pq93CrGqqjgJEkRwHPoWOj9lbVjcB9U5rPAdY2z9cCy2fiWAb/ACVZDCwFbhpuJUP1l8D7gV8Mu5BZ4IXALuBTTdfXJ5IcPeyihqGqtgEfBe4GdgAPVNXXhlvVrHBSVe2A3kkkcOJM7NTgH5AkxwBfBC6qqgeHXc8wJPldYGdV3TzsWmaJo4CXAX9dVUuBR5ih/8ofbpq+63OAFwALgKOTvGO4VR25DP4BSDKXXuhfVVXrhl3PEJ0FvDnJXcDngdcluXK4JQ3VPcA9VbXvf4DX0Psi6KLXA/+vqnZV1R5gHfCbQ65pNrg3yXyAZrlzJnZq8LcsSej14d5RVZcNu55hqqrVVXVyVS2md+Hu76qqs2d1VfVPwE+SLGmazgZuH2JJw3Q3cGaS5zT/Zs6moxe6p7gOWNE8XwFcOxM7Hcp4/B1zFvBOYEuSW5u2P23mJJDeC1zVzEb3I+BdQ65nKKrqpiTXALfQuxNuMx0buiHJ54DfBk5Icg/wQeBS4Ook59P7cjxvRo7lkA2S1C129UhSxxj8ktQxBr8kdYzBL0kdY/BLUscY/OqsJA/PwD6+kmR0JuqRBsXbOdVZSR6uqmOGXYc0aJ7xqxOSrE9yczPe+8oJ7X+e5JYkG5PMa9ouSHJ7ktuSfL5pOybJp5Jsadp/v2m/K8kJSY5O8r+T/H0znvxbm9cvnbCvjzZt85J8Mcl3m8dZTftrktzaPDYnee6gPyd1g2f86oQkx1fVfUlGgO8CrwF+Cryjqq5K8gHgxKp6T5LtwAuq6udJRqtqd5KPAM+qqoua/R1XVfc34w6NNft7Q1X9x+b159EbU/7bwIurqibs67PA/6iqbyZZBGyoqpck+V/ApVX1rWZQv3+uqscH+TmpGzzjV1dckOTvge8ApwCn0hsa+gvN61cCr2qe30ZvGIV30Bs+AHqDiH18386q6v4p+98CvD7JR5K8uqoeAB4E/hn4RJJzgUcn7Ou/N0N4XAcc25zdfwu4LMkFwKihr7YY/DriJfltemH7yqo6nd44MPub1m/ff3/fRC/kfx24uZkYJBNef/KGVf/QvH8LcEmSDzTB/Qp6I7MuB65v3v6MppYzmsfCqnqoqi4F/gMwAnwnyYufzp9bOhCDX13wPOD+qnq0CdMzm/ZnAP+2ef7vgG8meQZwSlV9nd6EMaPAMcDXgPfs2+HUuU+TLAAeraor6U0o8rKmu+Z5zYB8FwFnNG+fuq8zmuWLqmpLVX0E2AQY/GqFo3OqC64H3p3kNmArve4e6E188qtJbgYeAN5Kr1/+yqaPPsBfNP3yfwZ8vJkIey/wYXpjxu/zUmBNkl8Ae4A/BJ4LXNtMGh7gfc17L2j2dRu9f4M3Au8GLkry2mb/twNfnfmPQvLiriR1jl09ktQxBr8kdYzBL0kdY/BLUscY/JLUMQa/JHWMwS9JHfP/AS/qwWcjizDJAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from pylab import *\n", "scatter(x, y)\n", "xlabel(\"abscisses\")\n", "ylabel(\"ordonnees\")\n", "title(\"TITRE\")\n", "show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Point moyen" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "G ( 5.5 ; 34.838 )\n" ] } ], "source": [ "def moyenne(L):\n", " #renvoie la moyenne des elements de la liste L\n", " sommeL = 0\n", " nombre_de_donnees = len(L)\n", " for i in range(nombre_de_donnees):\n", " sommeL = sommeL + L[i]\n", " return sommeL / nombre_de_donnees\n", "\n", "print(\"G ( \",moyenne(x), \" ; \",moyenne(y),\" )\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Coefficient de corrélation linéaire" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "calcul de la variance des x :" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "V(x) = 8.25\n" ] } ], "source": [ "def variance(L):\n", " # L est une liste\n", " varianceL = 0\n", " nombre_de_donnees = len(L)\n", " m = moyenne(L)\n", " for i in range(nombre_de_donnees):\n", " varianceL = varianceL + (L[i] - m)**2\n", " varianceL = varianceL / nombre_de_donnees\n", " return varianceL\n", " \n", "print(\"V(x) = \", variance(x))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Pour la série x, l'écart-type vaut : 2.8722813232690143\n" ] } ], "source": [ "from math import sqrt\n", "\n", "print(\"Pour la série x, l'écart-type vaut : \",sqrt(variance(x)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "calcul de la variance des y :" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "V(y) = 458.790156\n", "Pour la série y, l'écart-type vaut : 21.41938738619758\n" ] } ], "source": [ "print(\"V(y) = \", variance(y))\n", "print(\"Pour la série y, l'écart-type vaut : \",sqrt(variance(y)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "calcul de la covariance de x et y :" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "COV(x,y) = 61.198\n" ] } ], "source": [ "def covariance(L1,L2):\n", " nombre_de_donnees = len(L1)\n", " if not(nombre_de_donnees == len(L2)):\n", " return 0\n", " else:\n", " cov = 0\n", " moyL1 = moyenne(L1)\n", " moyL2 = moyenne(L2)\n", " for i in range(nombre_de_donnees):\n", " cov = cov + (L1[i] - moyL1) * (L2[i] - moyL2)\n", " return cov / nombre_de_donnees\n", "\n", "print(\"COV(x,y) = \", covariance(x,y))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "calcul du coefficient de corrélation linéaire :" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Le coefficient de corrélation linéaire est r = 0.9947254043354764\n" ] } ], "source": [ "def coefficientCorrelation(L1,L2):\n", " return covariance(L1,L2) / (sqrt(variance(L1) * variance(L2)))\n", "print(\"Le coefficient de corrélation linéaire est r = \", coefficientCorrelation(x,y))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Droite de régression de y en x" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a = 7.417939393939394\n", "b = -5.960666666666661\n" ] } ], "source": [ "a = covariance(x,y) / variance(x)\n", "b= moyenne(y) - a * moyenne(x)\n", "print('a = ',a)\n", "print('b = ',b)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Tracé de la droite de régression de y en x" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df3xU9Z3v8deH8MMgCqJgIRgRhbAIKjaI1lapaNEuK6wudtX2UnWL7r1dtXZRYBd3ZfcKlq5u9674WG5V6K1VsA0gVEUeFNbVbUUQJRHEBaRAkiVUIEYSMD8+9485wBASmIQ5czI57+fjkcfMnMyPD6O8OTlz8v6auyMiIvHRIeoBREQksxT8IiIxo+AXEYkZBb+ISMwo+EVEYkbBLyISMwp+EZGYUfBLbJnZ50lfDWZWk3T7TjP7ezP7uZnlN7qvm9mBpNtfM7N5ZvZFcHuvma0ws8FJr/VdM6tv9Dyfm1nfKN8DiScFv8SWu3c7/AXsAP4kadsLSffb0ei+AJcmbfuPYNuPgu/nAaXAs41e8rfJzxN8lYX95xRpTMEvkmbuXgMsBC6LehaRpij4RdLMzE4Hbge2RD2LSFMU/CLp89dmth+oAr4KfKfR9680s/1JX1szP6KIgl8knX7s7j2A/kANUNDo+79z9x5JXxdmfEIRFPwiaefuO4AHgJ+YWW7U84g0puAXCYG7rwDKgElRzyLSmIJfJDyzgYfNrEtw+6omzuMfEeWAEk+mhVhEROJFe/wiIjGj4BcRiRkFv4hIzCj4RURipmPUA6TinHPO8f79+0c9hohIVlm3bt0f3L1X4+1ZEfz9+/dn7dq1UY8hIpJVzOz3TW3XoR4RkZhR8IuIxIyCX0QkZhT8IiIxo+AXEYmZ0M7qMbMCYEHSpgHAo8DPgu39ge3Abe6+L6w5RESy0eL1pcxevpmy/TX07ZHL5DEFjB+el5bnDm2P3903u/tl7n4Z8GWgGlgETAFWuvtAYGVwW0REAovXlzK1qJjS/TU4ULq/hqlFxSxeX5qW58/UoZ7RwFZ3/z0wDpgfbJ8PjM/QDCIiWWH28s3U1NYfs62mtp7Zyzen5fkzFfx/DrwYXD/X3csBgsveGZpBRCQrlO2vadH2lgo9+M2sM3Az8HILHzfJzNaa2do9e/aEM5yISBvUt0fTK3Y2t72lMrHHfxPwnrvvDm7vNrM+AMFlRVMPcve57l7o7oW9eh1XNSEi0m5NHlNAbqecY7bldsph8piCtDx/JoL/do4e5gF4BZgYXJ8ILMnADCIiWWP88Dxm3jKMvB65GJDXI5eZtwxL21k9oS69aGZdgZ3AAHevDLadDSwE8oEdwAR333ui5yksLHSVtIlI3Oz4tJr8s7u2+vFmts7dCxtvD3WP392r3f3sw6EfbPvU3Ue7+8Dg8oShLyISNwcO1fGPyzYy6ser+M1Hu0/+gBbKilpmEZG4WPVRBX+7uITS/TXcMTKfL5/fM+2voeAXEWkDKqoOMmPpRpZtKOei3t14+b6rGNE//aEPCn4RkUg1NDgL1u5k5qubOFjbwEM3DOLeawfQpWPOyR/cSgp+EZGIbKmoYlpRCWu272XkBT15/JZhXNirW+ivq+AXEcmwQ3X1zFm1lWdWbyW3cw5P3DqM2wrPw8wy8voKfhGRDHpn26dMW1TM1j0HuPnSvkwfO4ReZ3TJ6AwKfhGRDKisrmXW65t4cc1O+p2Vy7y7RjCqIJqqMgW/iEiI3J1lG8p5bOlG9lV/wb3XDOCB6wfStXN08avgFxEJya591UxfXMKqzXsYltedeXeNYGhe96jHUvCLiKRbXX0D8/5zO//0xseYwaNjhzDxK/3J6ZCZD29PRsEvIpJGJaWVTCnaQEnpZ4we3JsZ44eSl6Y65XRR8IuIpMGBQ3U8teJjnnv7E87u1oU5d17OTUO/lLFTNFtCwS8icooa9+s8cuNguud2inqsZin4RURaKZP9Oumk4BcRaaGGBmfh2p08nsF+nXRS8IuItMCWis+ZVlSc8X6ddFLwi4ik4FBdPc+s3sqcVYl+nR/degkTCvu1yQ9vT0bBLyJyEms+2cvUog1s3XOAcZcl+nXO6ZbZfp10UvCLiDSjLfXrpJOCX0Skkcb9OpOuGcCDEffrpFOofwoz6wH8FBgKOHA3sBlYAPQHtgO3ufu+MOcQEUlVW+3XSaew//n6CfC6u/+ZmXUGugLTgJXuPsvMpgBTgEdCnkNE5ITaer9OOoUW/GZ2JnAN8F0Ad/8C+MLMxgGjgrvNB1aj4BeRCCX361w3uDf/0Ab7ddIpzD3+AcAe4HkzuxRYBzwAnOvu5QDuXm5mTX5SYmaTgEkA+fn5IY4pInGV3K/T8/QuPH3H5XxzWNvs10mnMIO/I3A58Ffu/o6Z/YTEYZ2UuPtcYC5AYWGhhzOiiMRVcr/O7VfkM+XGwXTv2nb7ddIpzODfBexy93eC278kEfy7zaxPsLffB6gIcQYRkWPsqTrEjGUbWfpBWVb166RTaMHv7v9tZjvNrMDdNwOjgY3B10RgVnC5JKwZREQOy/Z+nXQK+6yevwJeCM7o2QbcBXQAFprZPcAOYELIM4hIzG2pqGJaUQlrtu/ligt6MjML+3XSKdTgd/f3gcImvjU6zNcVEYFEv86cVVt5ZnX29+ukU/v4NTQRkUbe2fYp0xYVs3XPAW6+NNGv0+uM7O3XSScFv4i0K5XVtcx8bRMvvdu++nXSScEvIu1C436d733tAn5ww6B206+TTnpHRCTrxaFfJ50U/CLSJixeX8rs5Zsp219D3x65TB5TwPjheSd8TBj9Oq2ZI9so+EUkcovXlzK1qJia2noASvfXMLWoGKDZ0E3u1xk9uDcz0tCv05o5slGHqAcQEZm9fPORsD2sprae2cs3H3ffA4fq+MdlG7n5X99i92eHePqOy/npxMK0lKq1ZI5spj1+EYlc2f6alLYn9+vcOTKfh28cTPfc9PXrpDpHtlPwi0jk+vbIpbSJcO0b7MVXVB1kxtKNLNtQHmq/zsnmaC90qEdEIjd5TAG5nY7tzMntlMMPvzGIl9bs4Pp/+nfe+HA3D90wiF/f/9XQStWam2PymIJQXi8q2uMXkcgd/uA0+Wya71x1Pi+t2ZnRfp2m5miPZ/WYe9uvui8sLPS1a9dGPYaIZEDjfp2/+eYfqV+nlcxsnbsf15emPX4RaTPUr5MZCn4RiZz6dTJLwS8ikWncrzPpmgE8eP1A9euETO+uiERC/TrRUfCLSEaF0a8jLaPgF5GMCaNfR1pOwS8ioav+oo6nVnzMs299wtnduvD0HZfzzWFf0imaEVHwi0iokvt17hiZzyNp7teRlgs1+M1sO1AF1AN17l5oZj2BBUB/YDtwm7vvC3MOEcm8PVWHmLFsI0s/KAu1X0daLhN7/F939z8k3Z4CrHT3WWY2Jbj9SAbmEJEMaGhwFq7dyeOvbuJgbQMP3TCIe68dQJeOOSd/sGREFId6xgGjguvzgdUo+EXahS0VnzOtqPhIv87jfzqMi3qH268jLRd28Dvwhpk58G/uPhc4193LAdy93Mya/PU8M5sETALIz88PeUyR+ErHUoON+3WeuHUYE758Hh10imabFHbwX+3uZUG4rzCzj1J9YPCPxFxIlLSFNaBInKVjqcE1n+xlatEG9etkkVCD393LgssKM1sEXAHsNrM+wd5+H6AizBlEpHknWmrwZMGvfp3sFVrwm9npQAd3rwqufwOYAbwCTARmBZdLwppBRE6sNUsNNu7X+d7XLuAHNwxSv04WCfO/1LnAouAXNDoCv3D3183sXWChmd0D7AAmhDiDiJxAS5ca3Lm3mulLSlitfp2sFlrwu/s24NImtn8KjA7rdUUkdZPHFBxzjB+aXmpQ/Trti342E4mxVJYaLN6V6Nf5sOwzrhvcm39Qv07WU/CLxNz44XlNfpB74FAdT674mOffVr9Oe6PgF5HjqF+nfVPwi8gRFVUHmbF0I8s2lKtfpx1T8IuI+nViRsEvEnNbKqqYVlTCmu17GXlBTx6/ZRgX9lK/Tnum4BeJqcb9Oj+69RImFPbTh7cxoOAXiaHkfp1xlyX6dc7ppn6duFDwi8SI+nUEFPwisdC4X2fSNQN48PqB6teJKf1XF2nn1K8jjbU4+M2sA9DN3T8LYR4RSRP160hzUgp+M/sFcB+JRdPXAd3N7El3nx3mcCLSOsW7Kpm6aAMlperXkeOlusc/xN0/M7M7gVdJrJG7DlDwi7QhBw7V8dSKj3ku6NeZc+fl3DRU/TpyrFSDv5OZdQLGA//q7rXBOroi0kaoX0dSlWrw/xuwHfgAeNPMzgd0jF+kDdhTdYgZyzay9IMy9etISlIKfnf/F+Bfkjb93sy+Hs5IIpIK9etIa6X64e65wONAX3e/ycyGAFcBz4Y5nIg0bUvF50wrKla/jrRKqod65gHPA38T3P4YWICCXySjDtXV88zqrcxZpX4dab1Ug/8cd19oZlMB3L3OzOpP9iARSZ/kfp2bL0306/Q6Q/060nKpBv8BMzsbcAAzuxKoTOWBZpYDrAVK3X2smfUk8dNCfxIfGN/m7vtaOLdIbFRW1zLr9U28uEb9OpIeqQb/Q8ArwIVm9jbQC/izFB/7ALAJODO4PQVY6e6zzGxKcPuR1EcWiQf160hYUj2r5z0zuxYoAAzY7O61J3ucmfUD/hj43yT+8QAYB4wKrs8HVqPgFznGrn3VTF9cwir160gIUj2rpyuJ4D7f3b9nZgPNrMDdl53kof8MPAyckbTtXHcvB3D3cjNr8mdWM5sETALIz89PZUyRrNe4X2f62CFMvOp8OuZ0iHo0aUdS/ZnxeRIVDVcFt3cBLwPNBr+ZjQUq3H2dmY1q6WDuPheYC1BYWKjfEpZ2T/06kimpBv+F7v4tM7sdwN1r7OTnj10N3Gxm3wROA840s58Du82sT7C33weoaPX0Iu1A436dp++4nG8OU7+OhCfV4P/CzHI5elbPhcChEz3A3acCU4P7jwL+2t2/bWazgYnArOBySetGF8l+v/loN9MXf6h+HcmoVIP/74DXgfPM7AUSe/PfbeVrzgIWmtk9wA5gQiufRyRrVVQd5LGlG/n1hnL160jGpXpWzwozew+4ksRZPQ+4+x9SfRF3X03i7B3c/VNgdIsnFWkHGhqcBWt3MlP9OhKhlpwQfBqwL3jMEDPD3d8MZyyR9mdLRRXTikqO9OtcN7g3P/vt73lqxcf07ZHL5DEFjB+eF/WYEgOpns75BPAt4EOgIdjsgIJf5CQO1dUzZ9VWnll9tF+nU44xbVEJNbWJ5pPS/TVMLSoGUPhL6FLd4x8PFLj7CT/QFZFjvbPtU6YtKmbrngOMuyzRr3NOty5cPes3R0L/sJraemYv36zgl9ClGvzbgE6c5EweEUmorK5l5mubeOndRL/O/Luv4NpBvY58v2x/TZOPa267SDqlGvzVwPtmtpKk8Hf3+0OZSiRLNe7XufeaATzQRL9O3x65lDYR8n31C1uSAakG/yvBl4g0Y+feaqYvKWH15j1c0q878+8ewcV9m+7XmTymgKlFxccc7sntlMPkMQWZGldiLNXTOeeHPYhItmrcr/Po2CFM/Ep/cjo0/5u3h4/jz16+mbL9NTqrRzIq1bN6rgb+Hjg/eIwB7u4DwhtNpO1L7tcZPbg3M1rQrzN+eJ6CXiKR6qGeZ4EfkChq08pbEnuN+3Xm3Hk5Nw1Vv45kh1SDv9LdXwt1EpEsseqjCv52cYn6dSRrpRr8q4JytSKOPavnvVCmEmmDKqoOMmPpRpapX0eyXKrBPzK4LEza5sB16R1HpO1paHAWrt3J40G/zg+uH8R9o9SvI9kr1bN6vh72ICJt0ZaKz5lWVHykX+fxW4ZxYa9uUY8lckpSPaunO4lq5muCTf8OzHD3yrAGE4nSobp6nlm9lTmrjvbrTCjspw9vpV1I9VDPc0AJcFtw+zsklmO8JYyhRKK05pO9TC3acFy/jkh70ZKlF29Nuv2Ymb0fxkAiUamsrmXW65t4cU2iX2feXSMYVdA76rFE0i7V4K8xs6+6+1tw5Be61CYl7UKq/Toi7UWq/2f/JTA/ONZvwF5av/SiSJuxa1810xeXsGrzHobldWfeXSMYmtd0v45Ie5HqWT3vA5ea2ZnB7c9CnUokZK3p1xFpL04Y/Gb2UDPbAXD3J0OYSSRUJaWVTClK9OtcN7g3M8ZdTL+zukY9lkjGnGyP/4zgsgAYwdFq5j/hJMsumtlpwX26BK/zS3f/OzPrCSwA+gPbgdvcfV9rhhdpicP9Os++/QmH9+s/Kv+Mtdv3KfglVk4Y/O7+GICZvQFc7u5Vwe2/B14+yXMfAq5z98/NrBPwlpm9RuIU0JXuPsvMpgBTgEdO7Y8hcmLJ/To5HYz6BgegrPKg1rqV2OmQ4v3ygS+Sbn9BYo+9WZ7weXCzU/DlwDjgcL//fBLr+YqEoqLqIN//xXvcNe9dcjvncE63zkdC/7DDa92KxEWqZ/X8P2CNmS0iEd5/ytHwbpaZ5ZCocr4IeNrd3zGzc929HMDdy82syROlzWwSMAkgPz8/xTFFEhoanAVrdzIz6Nd56IZB3HvtAAb/7etN3l9r3UqcnDT4LfFJ7s+A14CvBZvvcvf1J3usu9cDl5lZD2CRmQ1NdTB3nwvMBSgsLPST3F3kiC0VVUwtKubd7fuO69fRWrciKQS/u7uZLXb3LwOtqmF29/1mthq4EdhtZn2Cvf0+QEVrnlOksUN19cxZtZU5q7fQtXPHJvt1tNatSOqHen5nZiPc/d1Un9jMegG1QejnAtcDT5A4M2giMCu4XNLCmUWO8862T5m6qJhtJ+nX0Vq3IqkH/9eB+8xsO3CAo2vuXnKCx/Qh8du+OSQ+RF7o7svM7LfAQjO7B9gBTGj19BJ7ldW1zHxtEy+9m+jXmX/3FVw7qNcJH6O1biXuUg3+m4CzOHqM/01g/4ke4O4bgOFNbP8UGN2CGUWOo34dkdZL9W/JeOAvSCy9aCTO8vm/wP8JaS6RZiX361zSrzvz7x7BxX3VryOSqlSD/x7gSnc/AGBmTwC/RcEvGaR+HZH0SDX4DahPul0fbBPJiOJdlUxdlOjXGT24NzPGDyVPp2CKtEqqwf888E7wC1yQOPTzbDgjiRx1uF/nubc/4exuXZhz5+XcNPRLWgJR5BSkWsv8ZHAe/ldJ7Omn9AtcIqciuV/nzpH5PHzjYLrndop6LJGsl/IpEO7+Hq38BS6RlqioOshjSzfy6w3lXNS7Gy/fdxUj+veMeiyRdkPnvklGLV5f2uwvTzXXr9OlY07EU4u0Lwp+yZjF60uPqUso3V9zpBJ5aN6ZTCsqYc32vcf164hIein4JWNmL998TEcOJCqRpy8u4VBdA7mdc5rs1xGR9FLwS8Y0V31cdaiOmy/ty6N/0nS/joikV6oLsYicsuaqj88+vTP/cvtwhb5Ihij4JWP++huD6JRz7CGc0zp2YPrYIRFNJBJPOtQjGbFrXzWvfFBGbb3TKceorXfyVIksEgkFv4RK/ToibY+CX0JTUlrJlCL164i0NQp+STv164i0bQp+Savkfp07RubziPp1RNocBb+kRUXVQWYs3cgy9euItHkKfjklDQ3OwrU7eVz9OiJZI7TgN7PzgJ8BXwIagLnu/hMz6wksAPoD24Hb3H1fWHNIeLZUVKlfRyQLhbnHXwf80N3fM7MzgHVmtgL4LrDS3WeZ2RRgCvBIiHNImh2qq2fOqq08s3qr+nVEslBowe/u5UB5cL3KzDYBecA4YFRwt/nAahT8WeOdbZ8ybVExW/ccUL+OSJbKyDF+M+sPDAfeAc4N/lHA3cvNrHcmZpBTU1ldy8zXNvHSuzvpd1Yu8+4awagC/acTyUahB7+ZdQN+BTzo7p+lejjAzCYBkwDy8/PDG1BOyN1ZuqGcGUs/ZF91LfdeM4AHrh9I1846L0AkW4X6t9fMOpEI/RfcvSjYvNvM+gR7+32AiqYe6+5zgbkAhYWFHuac0rSde6uZvqSE1Zv3cEm/7sy/+wou7ts96rFE5BSFeVaPAc8Cm9z9yaRvvQJMBGYFl0vCmkFap66+geff3s6TK9SvI9IehbnHfzXwHaDYzN4Ptk0jEfgLzeweYAcwIcQZpIWKdyX6dT4sU7+OSHsV5lk9bwHN7SKODut1pXUOHKrjyRUf87z6dUTaPX1CJ8f069w5Mp+H1a8j0q4p+GMsuV9nYO9u/PK+qyhUv45Iu6fgj4nF60uZvXwzZftr6NP9NL42sBevlZRzsLaBH94wiHuvvZDOHbUSp0gcKPhjYPH6UqYWFVNTWw9AWeVBFqzdyUW9uzH3O19mgPp1RGJFu3gxMHv55iOhn6z6UJ1CXySGFPwxULq/psnt5ZUHMzyJiLQFOtTTjh3u12lOX52fLxJLCv526Gi/zkb2VX/BdYN7859b/sDBuoYj98ntlMPkMQURTikiUVHwtzPH9+uM4OK+3Y85q6dvj1wmjylg/PC8qMcVkQgo+NuJxv0608cO4btJ/Trjh+cp6EUEUPC3C+rXEZGWUPBnMfXriEhrKPizVHK/zh0j83lE/ToikiIFf5apqDrIY0s38usN5VzUuxsv33cVI9SvIyItoODPEg0NzoK1O5n56iYO1jbw0A2DuPfaAXTpmBP1aCKSZRT8WWBLRRXTikpYs30vIy/oyeO3DONCVS2ISCsp+NuwQ3X1zFm1lTmrt9C1c0d+dOslTCjspw9vReSUKPjbqHe2fcrURcVs23OAmy/ty/SxQ+h1RpeoxxKRdkDB38Yc7td56d2d9Dsrl3l3jWBUQe+oxxKRdkTB30a4O8s2lPNY0K8z6ZoBPHj9QLp21n8iEUmv0FLFzJ4DxgIV7j402NYTWAD0B7YDt7n7vrBmyBbN9euIiIQhzD7+ecCNjbZNAVa6+0BgZXA7turqG/jpf2zjG0+9yZpP9vLo2CEs+p9XK/RFJFSh7fG7+5tm1r/R5nHAqOD6fGA18EhYM7RlxbsqmbpoAyWl6tcRkczK9AHkc929HMDdy82s2U8tzWwSMAkgPz8/Q+OF78ChOp5a8THPqV9HRCLSZj85dPe5wFyAwsJCj3icVkvuwe95emca3NlXXcudI/N5WP06IhKBTAf/bjPrE+zt9wEqMvz6GbV4fSlTi4qPLHT+6YEvMOD+6y7ioW9o9SsRiUamF1t/BZgYXJ8ILMnw62fUj17/6EjoH+bAr94rjWYgERFCDH4zexH4LVBgZrvM7B5gFnCDmf0XcENwu13aUvE5ZZUHm/xe2f6aDE8jInJUmGf13N7Mt0aH9ZptQXK/jhl4E59O9NXZOyISoTb74W42Su7XGXdZXwrPP4vHXz32cE9upxwmj9HxfRGJjoI/DRr368y/+wquHdQLgDNO63TkrJ6+PXKZPKZAi56LSKQU/KfA3Vm6oZwZQb/OvdcM4IFG/Trjh+cp6EWkTVHwt1Jyv86wvO7Mu2sEQ/NUtSAibZ+Cv4Xq6ht4/u3tPLniY8zg0bFDmPiV/uR00G/eikh2UPC3QPGuSqYUbeDDMvXriEj2UvCnQP06ItKeKPhP4jcf7Wb64g8p3V/DHSPzeUT9OiKS5RT8zaioOshjSzfy6w3lXNS7Gy/fdxUj+veMeiwRkVOm4G+kocFZsHYnM1/dxMHaBh66YRD3XjuALh1zoh5NRCQtFPxJtlRUMa2ohDXb9zLygp48fsswLuzVLeqxRETSSsHPsf06XTt35Ee3XsKEwn768FZE2qXYB3/jfp3pY4dwTrcuUY8lIhKa2AZ/436deXeNYFRBsytBioi0G7ELfndn2YZyHgv6dSZdM4AHG/XriIi0Z7FKO/XriIi04+BPXuS8T/fTGHFBT974cLf6dUQk9tpl8Dde5Lys8iBL3i/j4r5nMvd/FKpfR0RiLdOLrWfE7OWbj1vkHGDfgS8U+iISe+0y+JtbzLy8mcXPRUTiJJLgN7MbzWyzmW0xsynpfv7mFjPXIuciIhEEv5nlAE8DNwFDgNvNbEg6X2PymAJyOx3braNFzkVEEqL4cPcKYIu7bwMws5eAccDGdL3A4TVutci5iMjxogj+PGBn0u1dwMjGdzKzScAkgPz8/Ba/iBY5FxFpWhTH+Js6ed6P2+A+190L3b2wV69eGRhLRCQeogj+XcB5Sbf7AWURzCEiEktRBP+7wEAzu8DMOgN/DrwSwRwiIrGU8WP87l5nZt8HlgM5wHPu/mGm5xARiatIKhvc/VXg1SheW0Qk7sz9uM9V2xwz2wP8Puo5TtE5wB+iHqIN0ftxlN6LY+n9ONapvB/nu/txZ8dkRfC3B2a21t0Lo56jrdD7cZTei2Pp/ThWGO9Hu+zqERGR5in4RURiRsGfOXOjHqCN0ftxlN6LY+n9OFba3w8d4xcRiRnt8YuIxIyCX0QkZhT8ITOz88xslZltMrMPzeyBqGeKmpnlmNl6M1sW9SxRM7MeZvZLM/so+H/kqqhnioqZ/SD4O1JiZi+a2WlRz5RJZvacmVWYWUnStp5mtsLM/iu4PCsdr6XgD18d8EN3/yPgSuB/pXvhmSz0ALAp6iHaiJ8Ar7v7YOBSYvq+mFkecD9Q6O5DSdS5/Hm0U2XcPODGRtumACvdfSCwMrh9yhT8IXP3cnd/L7heReIvdmwXCjCzfsAfAz+NepaomdmZwDXAswDu/oW77492qkh1BHLNrCPQlZi19rr7m8DeRpvHAfOD6/OB8el4LQV/BplZf2A48E60k0Tqn4GHgYaoB2kDBgB7gOeDQ18/NbPTox4qCu5eCvwY2AGUA5Xu/ka0U7UJ57p7OSR2IoHe6XhSBX+GmFk34FfAg+7+WdTzRMHMxgIV7r4u6lnaiI7A5cAz7j4cOECafpTPNsGx63HABUBf4HQz+3a0U7VfCv4MMLNOJEL/BXcvinqeCF0N3Gxm24GXgOvM7OfRjhSpXcAudz/8E+AvSfxDEEfXA5+4+x53rwWKgK9EPFNbsNvM+gAElxXpeFIFf8jMzEgcw93k7k9GPU+U3H2qu/dz9/4kPrj7jbvHdq/O3f8b2GlmBcGm0cDGCEeK0g7gSjPrGvydGU1MP+hu5I+2aKEAAAMTSURBVBVgYnB9IrAkHU8aSR9/zFwNfAcoNrP3g23TgjUJRP4KeCFYjW4bcFfE80TC3d8xs18C75E4E249MatuMLMXgVHAOWa2C/g7YBaw0MzuIfGP44S0vJYqG0RE4kWHekREYkbBLyISMwp+EZGYUfCLiMSMgl9EJGYU/BJbZvZ5Gp7jVTPrkY55RDJFp3NKbJnZ5+7eLeo5RDJNe/wSC2a22MzWBX3vk5K2/5OZvWdmK82sV7DtfjPbaGYbzOylYFs3M3vezIqD7bcG27eb2TlmdrqZ/drMPgj65L8VfH9W0nP9ONjWy8x+ZWbvBl9XB9uvNbP3g6/1ZnZGpt8niQft8UssmFlPd99rZrnAu8C1wB+Ab7v7C2b2KNDb3b9vZmXABe5+yMx6uPt+M3sC6OLuDwbPd5a77wt6hwqD57vR3b8XfL87iU753wKD3d2TnusXwBx3f8vM8oHl7v5HZrYUmOXubwelfgfdvS6T75PEg/b4JS7uN7MPgN8B5wEDSVRDLwi+/3Pgq8H1DSRqFL5Noj4AEiViTx9+Mnff1+j5i4HrzewJM/uau1cCnwEHgZ+a2S1AddJz/WtQ4fEKcGawd/828KSZ3Q/0UOhLWBT80u6Z2SgSYXuVu19KogemqWX9Dv/4+8ckQv7LwLpgYRBL+v7xD3T/OLh/MTDTzB4NgvsKEs2s44HXg7t3CGa5LPjKc/cqd58F/AWQC/zOzAafyp9bpDkKfomD7sA+d68OwvTKYHsH4M+C63cAb5lZB+A8d19FYsGYHkA34A3g+4efsPHap2bWF6h295+TWFDk8uBwTfegkO9B4LLg7o2f67Lg8kJ3L3b3J4C1gIJfQqF2TomD14H7zGwDsJnE4R5ILHxysZmtAyqBb5E4Lv/z4Bi9AU8Fx+X/EXg6WAi7HniMRGf8YcOA2WbWANQCfwmcASwJFg034AfBfe8PnmsDib+DbwL3AQ+a2deD598IvJb+t0JEH+6KiMSODvWIiMSMgl9EJGYU/CIiMaPgFxGJGQW/iEjMKPhFRGJGwS8iEjP/H1B4pA9ykDwxAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "scatter(x, y)\n", "x1 = linspace(min(x),max(x), 50)\n", "y1 = a*x1 + b\n", "plot(x1, y1)\n", "xlabel(\"abscisses\")\n", "ylabel(\"ordonnees\")\n", "title(\"TITRE\")\n", "show()" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### coefficient de corrélation linéaire (cas particuliers)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAWxUlEQVR4nO3df5BdZ33f8fcHWcGLDSxBC0UyjsCTWUKgWM7GNRUYDCSCQEBx0gItlNA0GhhS4zAVg/oHhpnMYEeEEGj6Q8WAUxsIBVlQwBYeCHVhsJO1ZSyBIyDEgCUaL7XXP/AGy+LbP+6RWS8r6+5q7z27Ou/XzJ295zlnz/P1492Pzp5z7nNSVUiSuuMRbRcgSRoug1+SOsbgl6SOMfglqWMMfknqGINfkjrG4JekjjH41VlJ7p31+kmSmVnL/zrJO5JcnuT0OdtWkh/NWn5ukg8nub9ZviPJNUmeNquv301yeM5+7k2yts0xUDcZ/Oqsqjr1yAv4HvCbs9qumLXd9+ZsC/CsWW3/p2n742b9OuAAcOmcLr86ez/N6+Cg/zuluQx+aYlV1QzwceDMtmuR5mPwS0ssySnAq4Fvt12LNB+DX1o6/yHJNHAP8BzgtXPWn5Nketbr74ZfomTwS0vp3VU1CqwHZoDxOeuvq6rRWa8zhl6hhMEvLbmq+h7wZuDPkoy0XY80l8EvDUBVXQMcBLa0XYs0l8EvDc524K1JHtksP3ue+/h/tc0C1U3xQSyS1C0e8UtSxxj8ktQxBr8kdYzBL0kdc1LbBfRjzZo1tX79+rbLkKQV5YYbbvhhVY3NbV8Rwb9+/XomJyfbLkOSVpQk352v3VM9ktQxBr8kdYzBL0kdY/BLUscY/JLUMQML/iQfTHJ7kn2z2v5Fkq83D7aeGFTfkrTS7dpzgI0Xf5GnvO2zbLz4i+zac2DJ9j3II/4PAy+e07YPOB+4doD9StKKtmvPAbbt3MuB6RkKODA9w7ade5cs/AcW/FV1LXDHnLZbqmr/oPqUpBPB9t37mTl0+CFtM4cOs3330sTnsj3Hn2RLkskkk1NTU22XI0lDc3B6ZkHtC7Vsg7+qdlTVRFVNjI39zCeOJemEtXZ0/id2Hq19oZZt8EtSV23dNM7I6lUPaRtZvYqtm8aXZP8rYq4eSeqSzRvWAb1z/QenZ1g7OsLWTeMPth+vgQV/ko8CzwfWJLkNuIjexd73A2PAZ5PcVFWbBlWDJK1UmzesW7Kgn2tgwV9Vrz7KqisH1ack6dg8xy9JHWPwS1LHGPyS1DEGvyR1jMEvSR1j8EtSxxj8ktQxBr8kdYzBL0kdY/BLUscY/JLUMQa/JHWMwS9JHWPwS1LHGPyS1DEGvyR1zMCCP8kHk9yeZN+stp9Pck2SbzVfHzeo/iVJ8xvkEf+HgRfPaXsb8IWq+kXgC82yJGmIBhb8VXUtvWfszvYK4LLm/WXA5kH1L0ma37DP8T+xqn4A0Hx9wtE2TLIlyWSSyampqaEVKEknumV7cbeqdlTVRFVNjI2NtV2OJJ0whh38/5DkSQDN19uH3L8kdd6wg//TwOua968DPjXk/iWp8wZ5O+dHga8C40luS/J7wMXAryX5FvBrzbIkaYhOGtSOq+rVR1n1wkH1KUk6tmV7cVeSNBgGvyR1jMEvSR1j8EtSxxj8ktQxBr8kdYzBL0kdY/BLUscY/JLUMQa/JHWMwS9JHWPwS1LHGPyS1DEGvyR1jMEvSR1j8EtSxwzsQSwPJ8mbgd8HAvz3qnpvG3VIGo5dew6wffd+Dk7PsHZ0hK2bxtm8YV3bZXXW0IM/yTPohf7ZwP3A1Uk+W1XfGnYtkgZv154DbNu5l5lDhwE4MD3Dtp17AQz/lrRxqueXgOuq6r6qegD438BvtVCHpCHYvnv/g6F/xMyhw2zfvb+litRG8O8Dzk3y+CSPAn4DePLcjZJsSTKZZHJqamroRUpaGgenZxbUrsEbevBX1S3AJcA1wNXA14AH5tluR1VNVNXE2NjYkKuUtFTWjo4sqF2D18pdPVV1aVWdVVXnAncAnt+XTlBbN40zsnrVQ9pGVq9i66bxlipSW3f1PKGqbk9yOnA+8Ow26pA0eEcu4HpXz/LRSvADn0zyeOAQ8KaqurOlOiQNweYN6wz6ZaSV4K+q57bRryTJT+5KUucY/JLUMQa/JHWMwS9JHWPwS1LHGPyS1DEGvyR1jMEvSR1j8EtSxxj8ktQxBr8kdYzBL0kdY/BLUscY/JLUMQa/JHVMK8Gf5A+TfD3JviQfTXJyG3VIUhcNPfiTrAMuACaq6hnAKuBVw65DkrqqrVM9JwEjSU4CHgUcbKkOSeqcoQd/VR0A3g18D/gBcFdVfX7udkm2JJlMMjk1NTXsMiXphLXg4E/yiCSPWWyHSR4HvAJ4CrAWOCXJa+ZuV1U7qmqiqibGxsYW250kaY6+gj/JR5I8JskpwDeA/Um2LrLPFwF/X1VTVXUI2An880XuS5K0QP0e8T+9qu4GNgOfA04HXrvIPr8HnJPkUUkCvBC4ZZH7kiQtUL/BvzrJanrB/6nmSL0W02FVXQ98ArgR2NvUsGMx+5IkLdxJfW7334Bbga8B1yb5BeDuxXZaVRcBFy32+yVJi9dX8FfV+4D3zWr6bpLzBlOSJGmQ+r24+8Qklya5qll+OvC6gVYmSRqIfs/xfxjYTe/2S4BvAhcOoiBJ0mD1G/xrqurjwE8AquoB4PDAqpIkDUy/wf+jJI+nuZMnyTnAXQOrSpI0MP3e1fMW4NPAGUm+AowBvzOwqiRJA9PvXT03JnkeMA4E2N/cyy9JWmH6vavnUcDbgAurah+wPsnLBlqZJGkg+j3H/yHgfuDZzfJtwB8NpCJJ0kD1G/xnVNUfA4cAqmqG3ikfSdIK02/w359khJ/e1XMG8OOBVSVJGph+7+q5CLgaeHKSK4CNwO8OqihJ0uD0e1fPNUluBM6hd4rnzVX1w4FWJkkaiH6P+AFOBu5svufpSaiqawdTliRpUPoK/iSXAK8Evk4zbQO98/0GvyStMP0e8W8GxqvKC7qStML1G/zfAVazBHfyJBkH/nJW01OBt1fVe49339Kw7NpzgO2793Nweoa1oyNs3TTO5g3r2i5L6ku/wX8fcFOSLzAr/KvqgoV2WFX7gTMBkqwCDgBXLnQ/Ult27TnAtp17mTnUm6D2wPQM23buBTD8tSL0G/yfbl5L7YXA31XVdwewb2kgtu/e/2DoHzFz6DDbd+83+LUi9Hs752UD6v9VwEfnW5FkC7AF4PTTTx9Q99LCHZyeWVC7tNz0O0nbxiTXJPlmku8k+fsk3zmejpP8HPBy4H/Ot76qdlTVRFVNjI2NHU9X0pJaOzqyoHZpuel3yoZLgfcAzwF+FZhovh6PlwA3VtU/HOd+pKHaummckdWrHtI2snoVWzeNt1SRtDD9nuO/q6quWuK+X81RTvNIy9mR8/je1aOVKlV17I2Si4FVwE4eelfPjYvqtDe///eBp1bVMR/hODExUZOTk4vpSpI6K8kNVTUxt73fI/5/1nydvYMCXrCYYqrqPuDxi/leSdLx6feunvMGXYgkaTj6vavnsUnek2Syef1JkscOujhJ0tLr966eDwL3AP+yed1N73GMkqQVpt9z/GdU1W/PWn5nkpsGUZAkabD6PeKfSfKcIwtJNgJ+TFGSVqB+j/jfCFzWnNcPcAc+elGSVqR+7+q5CXhWksc0y3cPtCpJ0sA8bPAnectR2gGoqvcMoCZJ0gAd64j/0c3XcXpz8xyZmvk38bGLkrQiPWzwV9U7AZJ8Hjirqu5plt/BUWbVlCQtb/3e1XM6cP+s5fuB9UtejSRp4Pq9q+d/AH+d5Ep6c/T8FjCoh7NIkgbomMGf3pXcvwCuAp7bNL++qvYMsjBJ0mAcM/irqpLsqqpfARY1DbMkafno9xz/dUmO94lbkqRloN9z/OcBb0hyK/Ajep/erar6p4MqTJI0GP0G/0uAx/HTc/zXAtOL7TTJKPAB4Bn0Lhb/26r66mL3J0nqX7+nejbTu7NnDTDWvH/5cfT7Z8DVVfU04FnALcexL0nSAvR7xP97wDlV9SOAJJcAXwXev9AOm/l+zqWZ5K2q7uehnxGQJA1Qv0f8AQ7PWj7ctC3GU4Ep4ENJ9iT5QJJTfqbDZMuRJ35NTU0tsitJ0lz9Bv+HgOuTvKOZruE64NJF9nkScBbwX6pqA72LxW+bu1FV7aiqiaqaGBsbW2RXkqS5+gr+ZhbO19Obh/9Oeh/geu8i+7wNuK2qrm+WP0HvHwJJ0hD0e46fqrqRJfgAV1X93yTfTzJeVfuBFwLfON79SpL603fwL7F/D1yR5OeA79D7a0KSNAStBH/zRK+JNvqWpK7r9+KuJOkEYfBLUscY/JLUMQa/JHWMwS9JHWPwS1LHGPyS1DEGvyR1jMEvSR1j8EtSxxj8ktQxBr8kdYzBL0kdY/BLUscY/JLUMa3Mx5/kVuAeeg9tf6CqnJu/Zbv2HGD77v0cnJ5h7egIWzeNs3nDurbLkjQAbT2BC+C8qvphi/2rsWvPAbbt3MvMocMAHJieYdvOvQCGv3QC8lSP2L57/4Ohf8TMocNs372/pYokDVJbwV/A55PckGTLfBsk2ZJkMsnk1NTUkMvrloPTMwtql7SytRX8G6vqLOAlwJuSnDt3g6raUVUTVTUxNjY2/Ao7ZO3oyILaJa1srQR/VR1svt4OXAmc3UYd6tm6aZyR1ase0jayehVbN423VJGkQRp68Cc5Jcmjj7wHfh3YN+w69FObN6zjXec/k3WjIwRYNzrCu85/phd2pRNUG3f1PBG4MsmR/j9SVVe3UIdm2bxhnUEvdcTQg7+qvgM8a9j9SpJ6vJ1TkjrG4JekjjH4JaljDH5J6hiDX5I6xuCXpI4x+CWpYwx+SeoYg1+SOsbgl6SOMfglqWMMfknqGINfkjrG4JekjjH4JaljDH5J6pjWgj/JqiR7knymrRokqYvaPOJ/M3BLi/1LUie1EvxJTgNeCnygjf4lqcvaOuJ/L/BW4CdH2yDJliSTSSanpqaGV5kkneCGHvxJXgbcXlU3PNx2VbWjqiaqamJsbGxI1UnSia+NI/6NwMuT3Ap8DHhBkstbqEOSOmnowV9V26rqtKpaD7wK+GJVvWbYdUhSV3kfvyR1zEltdl5VXwK+1GYNktQ1HvFLUscY/JLUMQa/JHWMwS9JHWPwS1LHGPyS1DEGvyR1jMEvSR1j8EtSxxj8ktQxBr8kdYzBL0kdY/BLUscY/JLUMQa/JHWMwS9JHTP0B7EkORm4Fnhk0/8nquqipe5n154DbN+9n4PTM6wdHWHrpnE2b1i31N1I0orTxhO4fgy8oKruTbIa+HKSq6rquqXqYNeeA2zbuZeZQ4cBODA9w7adewEMf0md18bD1quq7m0WVzevWso+tu/e/2DoHzFz6DDbd+9fym4kaUVq5Rx/klVJbgJuB66pquvn2WZLkskkk1NTUwva/8HpmQW1S1KXtBL8VXW4qs4ETgPOTvKMebbZUVUTVTUxNja2oP2vHR1ZULskdUmrd/VU1TTwJeDFS7nfrZvGGVm96iFtI6tXsXXT+FJ2I0kr0tCDP8lYktHm/QjwIuBvl7KPzRvW8a7zn8m60RECrBsd4V3nP9MLu5JEO3f1PAm4LMkqev/wfLyqPrPUnWzesM6gl6R5DD34q+pmYMOw+5Uk9fjJXUnqGINfkjrG4JekjjH4JaljUrWksyUMRJIp4LuL/PY1wA+XsJylYl0LY10LY10Ls1zrguOr7Req6mc+Absigv94JJmsqom265jLuhbGuhbGuhZmudYFg6nNUz2S1DEGvyR1TBeCf0fbBRyFdS2MdS2MdS3Mcq0LBlDbCX+OX5L0UF044pckzWLwS1LHnBDBn+SDSW5Psu8o65PkfUm+neTmJGctk7qen+SuJDc1r7cPqa4nJ/mrJLck+XqSN8+zzdDHrM+6hj5mSU5O8tdJvtbU9c55tmljvPqpq5WfsabvVUn2JPmZ2Xfb+p3so662fidvTbK36XNynvVLO15VteJfwLnAWcC+o6z/DeAqIMA5wPXLpK7nA59pYbyeBJzVvH808E3g6W2PWZ91DX3MmjE4tXm/GrgeOGcZjFc/dbXyM9b0/RbgI/P139bvZB91tfU7eSuw5mHWL+l4nRBH/FV1LXDHw2zyCuAvquc6YDTJk5ZBXa2oqh9U1Y3N+3uAW4C5Dy8Y+pj1WdfQNWNwb7O4unnNvSuijfHqp65WJDkNeCnwgaNs0srvZB91LVdLOl4nRPD3YR3w/VnLt7EMAqXx7OZP9auS/PKwO0+ynt7zEeY+8L7VMXuYuqCFMWtOD9wE3A5cU1XLYrz6qAva+Rl7L/BW4CdHWd/Wz9ex6oJ2xquAzye5IcmWedYv6Xh1JfgzT9tyODK6kd5cGs8C3g/sGmbnSU4FPglcWFV3z109z7cMZcyOUVcrY1ZVh6vqTOA04Owkz5izSSvj1UddQx+vJC8Dbq+qGx5us3naBjpefdbV1u/kxqo6C3gJ8KYk585Zv6Tj1ZXgvw148qzl04CDLdXyoKq6+8if6lX1OWB1kjXD6DvJanrhekVV7Zxnk1bG7Fh1tTlmTZ/TwJeAF89Z1erP2NHqamm8NgIvT3Ir8DHgBUkun7NNG+N1zLra+vmqqoPN19uBK4Gz52yypOPVleD/NPBvmivj5wB3VdUP2i4qyT9Jkub92fT+f/y/IfQb4FLglqp6z1E2G/qY9VNXG2OWZCzJaPN+BHgR8LdzNmtjvI5ZVxvjVVXbquq0qloPvAr4YlW9Zs5mQx+vfupq6efrlCSPPvIe+HVg7p2ASzpebTxsfckl+Si9q/FrktwGXETvQhdV9V+Bz9G7Kv5t4D7g9cukrt8B3pjkAWAGeFU1l/AHbCPwWmBvc34Y4D8Cp8+qrY0x66euNsbsScBlSVbRC4KPV9VnkrxhVl1tjFc/dbX1M/YzlsF49VNXG+P1RODK5t+bk4CPVNXVgxwvp2yQpI7pyqkeSVLD4JekjjH4JaljDH5J6hiDX5I6xuBXZyW599hbHXMfnztyL720Ung7pzoryb1VdWrbdUjD5hG/OiHJrmYCrK/PngQryZ8kuTHJF5KMNW0XJPlGevOef6xpOzXJh9KbM/3mJL/dtN+aZE3z6cvPNpN77Uvyymb9xbP29e6mbSzJJ5P8TfPa2LQ/Lz+dB37PkU9zSkvNI351QpKfr6o7mqkN/gZ4HvBD4DVVdUV6D9x4QlX9QZKDwFOq6sdJRqtqOsklwCOr6sJmf4+rqjubeV8mmv29uKp+v1n/WGAV8FXgaVVVs/b1EeA/V9WXk5wO7K6qX0ryv4CLq+or6U1U949V9cAwx0nd4BG/uuKCJF8DrqM32dUv0pua9y+b9ZcDz2ne3wxckeQ1wJHgfRHw50d2VlV3ztn/XuBFSS5J8tyqugu4G/hH4ANJzqf3Ufsj+/pPzbQUnwYe0xzdfwV4T5ILgFFDX4Ni8OuEl+T59ML22c10u3uAk+fZ9Mifvy+lF/K/AtyQ5CR60+Ie9c/jqvpms/1e4F1J3t4E99n0ZhvdDFzdbP6IppYzm9e6qrqnqi4G/h0wAlyX5GnH898tHY3Bry54LHBnVd3XhOk5Tfsj6E3KBfCvgC8neQTw5Kr6K3oP7BgFTgU+D/zBkR0medzsDpKsBe6rqsuBdwNnNadrHttM73shcGaz+dx9ndl8PaOq9lbVJcAkYPBrIE6I2TmlY7gaeEOSm4H99E73APwI+OUkNwB3Aa+kd17+8uYcfYA/bc7L/xHw50n2AYeBdwKznxfwTGB7kp8Ah4A30ntu8KeSnNzs6w+bbS9o9nUzvd/Ba4E3ABcmOa/Z/zfoPWNVWnJe3JWkjvFUjyR1jMEvSR1j8EtSxxj8ktQxBr8kdYzBL0kdY/BLUsf8f7pSeSRrdHfRAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "r = 1.0\n" ] } ], "source": [ "from pylab import *\n", "\n", "x = [1,2,3,4,5]\n", "y = [3,5,7,9,11]\n", "\n", "scatter(x, y)\n", "xlabel(\"abscisses\")\n", "ylabel(\"ordonnees\")\n", "title(\"TITRE\")\n", "show()\n", "\n", "print(\"r = \",coefficientCorrelation(x,y))" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAWx0lEQVR4nO3df5BdZ33f8fcHWcGLDSxBC0UyjsCTESFQLGfjmgoMBhJBIKA4aYEWSmgaDQypcZiKQf0Dw0xmsCNCCDT9oWLAqQ2EgiwoYAsPhLow2MnaMpbAERBiwBKNl9rrH3iDZfHtH/esWS8r6+5q7z27Ou/XzJ17z3POnufrx3c/Onvuuc9JVSFJ6o5HtF2AJGm4DH5J6hiDX5I6xuCXpI4x+CWpYwx+SeoYg1+SOsbgV2cluXfW4ydJpmct/+sk70hyeZLT52xbSX40a/m5ST6c5P5m+Y4k1yR52qy+fjfJkTn7uTfJ2jbHQN1k8KuzqurUmQfwPeA3Z7VdMWu7783ZFuBZs9r+T9P2x836dcBB4NI5XX519n6ax6FB/3dKcxn80hKrqmng48CZbdcizcfgl5ZYklOAVwPfbrsWaT4Gv7R0/kOSKeAe4DnAa+esPyfJ1KzH3w2/RMngl5bSu6tqFFgPTAMb5qy/rqpGZz3OGHqFEga/tOSq6nvAm4E/SzLSdj3SXAa/NABVdQ1wCNjadi3SXAa/NDg7gLcmeWSz/Ox5ruP/1TYLVDfFG7FIUrd4xC9JHWPwS1LHGPyS1DEGvyR1zEltF9CPNWvW1Pr169suQ5JWlBtuuOGHVTU2t31FBP/69euZmJhouwxJWlGSfHe+dk/1SFLHGPyS1DEGvyR1jMEvSR1j8EtSxwws+JN8MMntSfbPavsXSb7e3Nh6fFB9A+zee5BNF3+Rp7zts2y6+Ivs3ntwkN1J0ooxyCP+DwMvntO2HzgfuHaA/bJ770G279rHwalpCjg4Nc32XfsMf0ligMFfVdcCd8xpu6WqDgyqzxk79hxg+vCRh7RNHz7Cjj0D71qSlr1le44/ydYkE0kmJicnF/Szh6amF9QuSV2ybIO/qnZW1XhVjY+N/cw3jh/W2tH573Z3tHZJ6pJlG/zHY9vmDYysXvWQtpHVq9i2ee69ryWpe1bEXD0LtWXjOqB3rv/Q1DRrR0fYtnnDg+2S1GUDC/4kHwWeD6xJchtwEb0Pe98PjAGfTXJTVW0eRP9bNq4z6CVpHgML/qp69VFWXTmoPiVJx3ZCnuOXJB2dwS9JHWPwS1LHGPyS1DEGvyR1jMEvSR1j8EtSxxj8ktQxBr8kdYzBL0kdY/BLUscY/JLUMQa/JHWMwS9JHWPwS1LHGPyS1DEDC/4kH0xye5L9s9p+Psk1Sb7VPD9uUP1LkuY3yCP+DwMvntP2NuALVfWLwBeaZUnSEA0s+KvqWnr32J3tFcBlzevLgC2D6l+SNL9hn+N/YlX9AKB5fsLRNkyyNclEkonJycmhFShJJ7pl++FuVe2sqvGqGh8bG2u7HEk6YQw7+P8hyZMAmufbh9y/JHXesIP/08DrmtevAz415P4lqfMGeTnnR4GvAhuS3Jbk94CLgV9L8i3g15plSdIQnTSoHVfVq4+y6oWD6lOSdGzL9sNdSdJgGPyS1DEGvyR1jMEvSR1j8EtSxxj8ktQxBr8kdYzBL0kdY/BLUscY/JLUMQa/JHWMwS9JHWPwS1LHGPyS1DEGvyR1jMEvSR0zsBuxPJwkbwZ+Hwjw36vqvW3UoZ/avfcgO/Yc4NDUNGtHR9i2eQNbNq5ruyxJAzD04E/yDHqhfzZwP3B1ks9W1beGXYt6du89yPZd+5g+fASAg1PTbN+1D8Dwl05AbZzq+SXguqq6r6oeAP438Fst1KHGjj0HHgz9GdOHj7Bjz4GWKpI0SG0E/37g3CSPT/Io4DeAJ8/dKMnWJBNJJiYnJ4deZJccmppeULuklW3owV9VtwCXANcAVwNfAx6YZ7udVTVeVeNjY2NDrrJb1o6OLKhd0srWylU9VXVpVZ1VVecCdwCe32/Rts0bGFm96iFtI6tXsW3zhpYqkjRIbV3V84Squj3J6cD5wLPbqEM9Mx/gelWP1A2tBD/wySSPBw4Db6qqO1uqQ40tG9cZ9FJHtBL8VfXcNvqVJPnNXUnqHINfkjrG4JekjjH4JaljDH5J6hiDX5I6xuCXpI4x+CWpYwx+SeoYg1+SOsbgl6SOMfglqWMMfknqGINfkjrG4Jekjmkl+JP8YZKvJ9mf5KNJTm6jDknqoqEHf5J1wAXAeFU9A1gFvGrYdUhSV7V1quckYCTJScCjgEMt1SFJnTP04K+qg8C7ge8BPwDuqqrPz90uydYkE0kmJicnh12mJJ2wFhz8SR6R5DGL7TDJ44BXAE8B1gKnJHnN3O2qamdVjVfV+NjY2GK7kyTN0VfwJ/lIksckOQX4BnAgybZF9vki4O+rarKqDgO7gH++yH1Jkhao3yP+p1fV3cAW4HPA6cBrF9nn94BzkjwqSYAXArcscl+SpAXqN/hXJ1lNL/g/1Ryp12I6rKrrgU8ANwL7mhp2LmZfkqSFO6nP7f4bcCvwNeDaJL8A3L3YTqvqIuCixf68JGnx+gr+qnof8L5ZTd9Nct5gSpIkDVK/H+4+McmlSa5qlp8OvG6glUmSBqLfc/wfBvbQu/wS4JvAhYMoSJI0WP0G/5qq+jjwE4CqegA4MrCqJEkD02/w/yjJ42mu5ElyDnDXwKqSJA1Mv1f1vAX4NHBGkq8AY8DvDKwqSdLA9HtVz41JngdsAAIcaK7llyStMP1e1fMo4G3AhVW1H1if5GUDrUySNBD9nuP/EHA/8Oxm+TbgjwZSkSRpoPoN/jOq6o+BwwBVNU3vlI8kaYXpN/jvTzLCT6/qOQP48cCqkiQNTL9X9VwEXA08OckVwCbgdwdVlCRpcPq9queaJDcC59A7xfPmqvrhQCuTJA1Ev0f8ACcDdzY/8/QkVNW1gylLkjQofQV/kkuAVwJfp5m2gd75foNfklaYfo/4twAbqsoPdCVphes3+L8DrGYJruRJsgH4y1lNTwXeXlXvPd59S8Oye+9Bduw5wKGpadaOjrBt8wa2bFzXdllSX/oN/vuAm5J8gVnhX1UXLLTDqjoAnAmQZBVwELhyofuR2rJ770G279rH9OHeBLUHp6bZvmsfgOGvFaHf4P9081hqLwT+rqq+O4B9SwOxY8+BB0N/xvThI+zYc8Dg14rQ7+Wclw2o/1cBH51vRZKtwFaA008/fUDdSwt3aGp6Qe3SctPvJG2bklyT5JtJvpPk75N853g6TvJzwMuB/znf+qraWVXjVTU+NjZ2PF1JS2rt6MiC2qXlpt8pGy4F3gM8B/hVYLx5Ph4vAW6sqn84zv1IQ7Vt8wZGVq96SNvI6lVs27yhpYqkhen3HP9dVXXVEvf9ao5ymkdazmbO43tVj1aqVNWxN0ouBlYBu3joVT03LqrT3vz+3weeWlXHvIXj+Ph4TUxMLKYrSeqsJDdU1fjc9n6P+P9Z8zx7BwW8YDHFVNV9wOMX87OSpOPT71U95w26EEnScPR7Vc9jk7wnyUTz+JMkjx10cZKkpdfvVT0fBO4B/mXzuJve7RglSStMv+f4z6iq3561/M4kNw2iIEnSYPV7xD+d5DkzC0k2AX5NUZJWoH6P+N8IXNac1w9wB956UZJWpH6v6rkJeFaSxzTLdw+0KknSwDxs8Cd5y1HaAaiq9wygJknSAB3riP/RzfMGenPzzEzN/Jt420VJWpEeNvir6p0AST4PnFVV9zTL7+Aos2pKkpa3fq/qOR24f9by/cD6Ja9GkjRw/V7V8z+Av05yJb05en4LGNTNWSRJA3TM4E/vk9y/AK4Cnts0v76q9g6yMEnSYBwz+Kuqkuyuql8BFjUNsyRp+ej3HP91SY73jluSpGWg33P85wFvSHIr8CN6396tqvqngypMkjQY/Qb/S4DH8dNz/NcCU4vtNMko8AHgGfQ+LP63VfXVxe5PktS/fk/1bKF3Zc8aYKx5/fLj6PfPgKur6mnAs4BbjmNfkqQF6PeI//eAc6rqRwBJLgG+Crx/oR028/2cSzPJW1Xdz0O/IyBJGqB+j/gDHJm1fKRpW4ynApPAh5LsTfKBJKf8TIfJ1pk7fk1OTi6yK0nSXP0G/4eA65O8o5mu4Trg0kX2eRJwFvBfqmojvQ+L3zZ3o6raWVXjVTU+Nja2yK4kSXP1FfzNLJyvpzcP/530vsD13kX2eRtwW1Vd3yx/gt4/BJKkIej3HD9VdSNL8AWuqvq/Sb6fZENVHQBeCHzjePcrSepP38G/xP49cEWSnwO+Q++vCUnSELQS/M0dvcbb6FuSuq7fD3clSScIg1+SOsbgl6SOMfglqWMMfknqGINfkjrG4JekjjH4JaljDH5J6hiDX5I6xuCXpI4x+CWpYwx+SeoYg1+SOsbgl6SOaWU+/iS3AvfQu2n7A1Xl3PzSCWz33oPs2HOAQ1PTrB0dYdvmDWzZuK7tsjqrrTtwAZxXVT9ssX9JQ7B770G279rH9OEjABycmmb7rn0Ahn9LPNUjaaB27DnwYOjPmD58hB17DrRUkdoK/gI+n+SGJFvn2yDJ1iQTSSYmJyeHXJ6kpXJoanpB7Rq8toJ/U1WdBbwEeFOSc+duUFU7q2q8qsbHxsaGX6GkJbF2dGRB7Rq8VoK/qg41z7cDVwJnt1GHpMHbtnkDI6tXPaRtZPUqtm3e0FJFGnrwJzklyaNnXgO/Duwfdh2ShmPLxnW86/xnsm50hADrRkd41/nP9IPdFrVxVc8TgSuTzPT/kaq6uoU6JA3Jlo3rDPplZOjBX1XfAZ417H4lST1ezilJHWPwS1LHGPyS1DEGvyR1jMEvSR1j8EtSxxj8ktQxBr8kdYzBL0kdY/BLUscY/JLUMQa/JHWMwS9JHWPwS1LHGPyS1DEGvyR1TGvBn2RVkr1JPtNWDZLURW0e8b8ZuKXF/iWpk1oJ/iSnAS8FPtBG/5LUZW0d8b8XeCvwk6NtkGRrkokkE5OTk8OrTJJOcEMP/iQvA26vqhsebruq2llV41U1PjY2NqTqJOnE18YR/ybg5UluBT4GvCDJ5S3UIUmdNPTgr6rtVXVaVa0HXgV8sapeM+w6JKmrvI5fkjrmpDY7r6ovAV9qswZJ6hqP+CWpYwx+SeoYg1+SOsbgl6SOMfglqWMMfknqGINfkjrG4JekjjH4JaljDH5J6hiDX5I6xuCXpI4x+CWpYwx+SeoYg1+SOsbgl6SOGfqNWJKcDFwLPLLp/xNVddGw65Ck5Wz33oPs2HOAQ1PTrB0dYdvmDWzZuG5J9t3GHbh+DLygqu5Nshr4cpKrquq6FmqRpGVn996DbN+1j+nDRwA4ODXN9l37AJYk/Nu42XpV1b3N4urmUcOuQ5KWqx17DjwY+jOmDx9hx54DS7L/Vs7xJ1mV5CbgduCaqrp+nm22JplIMjE5OTn8IiWpJYemphfUvlCtBH9VHamqM4HTgLOTPGOebXZW1XhVjY+NjQ2/SElqydrRkQW1L1SrV/VU1RTwJeDFbdYhScvJts0bGFm96iFtI6tXsW3zhiXZ/9CDP8lYktHm9QjwIuBvh12HJC1XWzau413nP5N1oyMEWDc6wrvOf+aKvqrnScBlSVbR+4fn41X1mRbqkKRla8vGdUsW9HMNPfir6mZg47D7lST1+M1dSeoYg1+SOsbgl6SOMfglqWNStfxnS0gyCXx3kT++BvjhEpazVKxrYaxrYaxrYZZrXXB8tf1CVf3MN2BXRPAfjyQTVTXedh1zWdfCWNfCWNfCLNe6YDC1eapHkjrG4JekjulC8O9su4CjsK6Fsa6Fsa6FWa51wQBqO+HP8UuSHqoLR/ySpFkMfknqmBMi+JN8MMntSfYfZX2SvC/Jt5PcnOSsZVLX85PcleSm5vH2IdX15CR/leSWJF9P8uZ5thn6mPVZ19DHLMnJSf46ydeaut45zzZtjFc/dbXyHmv6XpVkb5KfmX23rd/JPupq63fy1iT7mj4n5lm/tONVVSv+AZwLnAXsP8r63wCuAgKcA1y/TOp6PvCZFsbrScBZzetHA98Ent72mPVZ19DHrBmDU5vXq4HrgXOWwXj1U1cr77Gm77cAH5mv/7Z+J/uoq63fyVuBNQ+zfknH64Q44q+qa4E7HmaTVwB/UT3XAaNJnrQM6mpFVf2gqm5sXt8D3ALMnfh76GPWZ11D14zBvc3i6uYx96qINsarn7pakeQ04KXAB46ySSu/k33UtVwt6XidEMHfh3XA92ct38YyCJTGs5s/1a9K8svD7jzJenr3R5h7w/tWx+xh6oIWxqw5PXATcDtwTVUti/Hqoy5o5z32XuCtwE+Osr6t99ex6oJ2xquAzye5IcnWedYv6Xh1JfgzT9tyODK6kd5cGs8C3g/sHmbnSU4FPglcWFV3z109z48MZcyOUVcrY1ZVR6rqTOA04Owkz5izSSvj1UddQx+vJC8Dbq+qGx5us3naBjpefdbV1u/kpqo6C3gJ8KYk585Zv6Tj1ZXgvw148qzl04BDLdXyoKq6e+ZP9ar6HLA6yZph9J1kNb1wvaKqds2zSStjdqy62hyzps8p4EvAi+esavU9drS6WhqvTcDLk9wKfAx4QZLL52zTxngds6623l9Vdah5vh24Ejh7ziZLOl5dCf5PA/+m+WT8HOCuqvpB20Ul+SdJ0rw+m97/j/83hH4DXArcUlXvOcpmQx+zfupqY8ySjCUZbV6PAC8C/nbOZm2M1zHramO8qmp7VZ1WVeuBVwFfrKrXzNls6OPVT10tvb9OSfLomdfArwNzrwRc0vFq42brSy7JR+l9Gr8myW3ARfQ+6KKq/ivwOXqfin8buA94/TKp63eANyZ5AJgGXlXNR/gDtgl4LbCvOT8M8B+B02fV1saY9VNXG2P2JOCyJKvoBcHHq+ozSd4wq642xqufutp6j/2MZTBe/dTVxng9Ebiy+ffmJOAjVXX1IMfLKRskqWO6cqpHktQw+CWpYwx+SeoYg1+SOsbgl6SOMfjVWUnuPfZWx9zH52aupZdWCi/nVGclubeqTm27DmnYPOJXJyTZ3UyA9fXZk2Al+ZMkNyb5QpKxpu2CJN9Ib97zjzVtpyb5UHpzpt+c5Leb9luTrGm+ffnZZnKv/Ule2ay/eNa+3t20jSX5ZJK/aR6bmvbn5afzwO+d+TantNQ84lcnJPn5qrqjmdrgb4DnAT8EXlNVV6R3w40nVNUfJDkEPKWqfpxktKqmklwCPLKqLmz297iqurOZ92W82d+Lq+r3m/WPBVYBXwWeVlU1a18fAf5zVX05yenAnqr6pST/C7i4qr6S3kR1/1hVDwxznNQNHvGrKy5I8jXgOnqTXf0ival5/7JZfznwnOb1zcAVSV4DzATvi4A/n9lZVd05Z//7gBcluSTJc6vqLuBu4B+BDyQ5n95X7Wf29Z+aaSk+DTymObr/CvCeJBcAo4a+BsXg1wkvyfPphe2zm+l29wInz7PpzJ+/L6UX8r8C3JDkJHrT4h71z+Oq+maz/T7gXUne3gT32fRmG90CXN1s/oimljObx7qquqeqLgb+HTACXJfkacfz3y0djcGvLngscGdV3deE6TlN+yPoTcoF8K+ALyd5BPDkqvorejfsGAVOBT4P/MHMDpM8bnYHSdYC91XV5cC7gbOa0zWPbab3vRA4s9l87r7ObJ7PqKp9VXUJMAEY/BqIE2J2TukYrgbekORm4AC90z0APwJ+OckNwF3AK+mdl7+8OUcf4E+b8/J/BPx5kv3AEeCdwOz7BTwT2JHkJ8Bh4I307hv8qSQnN/v6w2bbC5p93Uzvd/Ba4A3AhUnOa/b/DXr3WJWWnB/uSlLHeKpHkjrG4JekjjH4JaljDH5J6hiDX5I6xuCXpI4x+CWpY/4/ERd5JJK+/g4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "r = -1.0\n" ] } ], "source": [ "from pylab import *\n", "\n", "x = [1,2,3,4,5]\n", "y = [11,9,7,5,3]\n", "\n", "scatter(x, y)\n", "xlabel(\"abscisses\")\n", "ylabel(\"ordonnees\")\n", "title(\"TITRE\")\n", "show()\n", "\n", "print(\"r = \",coefficientCorrelation(x,y))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAV4klEQVR4nO3df7BfdX3n8efLADWKEmruOhLAUAajdBV/XBFXXbE/lh/9AbXuilpdGXcZWqnazlJxZ9YfY3eURl3tgmUZRGu1Zd3KYpxFU6dbS6uiJIBEcOJEVAhx1lAMKKSFhPf+8T0pXy83uSfyPd/Lzef5mPlO7vmczznf94eE87rnfM/3c1JVSJLa9ZjFLkCStLgMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0DqJPnx2OvBJDvHll+T5J1JPpHk6Dl9K8m9Y8svSfKxJPd3y3cl+UKSp4+91+uT7J6znx8nOWIx/xuoTQaB1KmqQ/e8gNuAXxtr++RYv9vm9AU4Yazt77q2P+rWrwLuAD4y5y2/Mr6f7rVt6HFKcxkE0sCqaifwKeDZi12LNB+DQBpYkscDrwK2LHYt0nwMAmk4/ynJDuBHwIuB185Zf1KSHWOvb0+/RMkgkIb0vqpaAawGdgJr5qy/tqpWjL2OnXqFEgaBNLiqug14M/ChJMsXux5pLoNAmoKq+gKwDThnsWuR5jIIpOlZC/xBkp/pll84z/cInr+YBapN8cE0ktQ2zwgkqXEGgSQ1ziCQpMYZBJLUuIMWu4D9tXLlylq9evVilyFJS8rGjRvvrKqZ+dYtuSBYvXo1GzZsWOwyJGlJSfK9va3z0pAkNc4gkKTGGQSS1DiDQJIaZxBIUuMGu2soyeXArwI/qKp/Oc/6AB8CTgfuA15fVdcPUctVN9zB2vWb2bZjJ0esWM75p6zhzOesGuKtJGnihj6GDXlG8DHg1H2sPw04rnudA/zJEEVcdcMdvO3KTdyxYycF3LFjJ2+7chNX3XDHEG8nSRM1jWPYYEFQVdcAd+2jyxnAx2vkWmBFkqdMuo616zez84HdP9G284HdrF2/edJvJUkTN41j2GJ+RrAKuH1seWvX9jBJzkmyIcmG7du379ebbNuxc7/aJenRZBrHsMUMgszTNu/DEarq0qqararZmZl5vyG9V0esmP/JgHtrl6RHk2kcwxYzCLYCR40tH8noUX4Tdf4pa1h+8LKfaFt+8DLOP2Xuc8Ql6dFnGsewxQyCdcDrMnIScHdVfX/Sb3Lmc1bxnpc/k1UrlhNg1YrlvOflz/SuIUlLwjSOYYM9qjLJXwAnAyuB/we8AzgYoKou6W4fvYjRnUX3AWdX1YKzyc3OzpaTzknS/kmysapm51s32PcIqupVC6wv4I1Dvb8kqR+/WSxJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMGDYIkpybZnGRLkgvmWX9Yks8m+XqSm5OcPWQ9kqSHGywIkiwDLgZOA44HXpXk+Dnd3gjcUlUnACcD709yyFA1SZIebsgzghOBLVV1a1XdD1wBnDGnTwFPSBLgUOAuYNeANUmS5hgyCFYBt48tb+3axl0EPAPYBmwC3lxVD87dUZJzkmxIsmH79u1D1StJTRoyCDJPW81ZPgW4ETgCeDZwUZInPmyjqkuraraqZmdmZiZfqSQ1bMgg2AocNbZ8JKPf/MedDVxZI1uA7wBPH7AmSdIcQwbBdcBxSY7pPgA+C1g3p89twC8CJHkysAa4dcCaJElzHDTUjqtqV5LzgPXAMuDyqro5ybnd+kuAdwMfS7KJ0aWkt1bVnUPVJEl6uMGCAKCqrgauntN2ydjP24B/M2QNkqR985vFktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmN2+8gSPKYJE8cohhJ0vT1CoIkf57kiUkeD9wCbE5yfo/tTk2yOcmWJBfspc/JSW5McnOSv92/8iVJj1TfM4Ljq+oe4EzgauBo4LX72iDJMuBi4DTgeOBVSY6f02cF8GHg16vq54F/u3/lS5Ieqb5BcHCSgxkFwWeq6gGgFtjmRGBLVd1aVfcDVwBnzOnzauDKqroNoKp+0L90SdIk9A2C/wF8F3g8cE2SpwL3LLDNKuD2seWtXdu4pwGHJ/liko1JXjffjpKck2RDkg3bt2/vWbIkqY9eQVBVf1xVq6rq9Br5HvCyBTbLfLuas3wQ8DzgV4BTgP+S5GnzvP+lVTVbVbMzMzN9SpYk9dT3w+InJ/lIks91y8cD/36BzbYCR40tHwlsm6fP56vq3qq6E7gGOKFX5ZKkieh7aehjwHrgiG75W8BbFtjmOuC4JMckOQQ4C1g3p89ngJckOSjJ44AXAN/sWZMkaQL6BsHKqvoU8CBAVe0Cdu9rg67PeYwC5JvAp6rq5iTnJjm36/NN4PPATcDXgMuq6hs/1UgkST+Vg3r2uzfJk+iu8Sc5Cbh7oY2q6mpGt5uOt10yZ3ktsLZnHZKkCesbBL/P6LLOsUm+BMwArxisKknS1PQKgqq6PslLgTWM7gba3H2XQJK0xPW9a+hxwAXAW7pr+KuT/OqglUmSpqLvh8UfBe4HXtgtbwX+cJCKJElT1TcIjq2qPwIeAKiqncz/hTFJ0hLTNwjuT7Kch+4aOhb4p8GqkiRNTd+7ht7B6H7/o5J8EngR8PqhipIkTU/fu4a+kOR64CRGl4Te3E0JIUla4vqeEQA8Fvhht83xSaiqa4YpS5I0Lb2CIMmFwCuBm+mmmWD0eYFBIElLXN8zgjOBNVXlB8SSdIDpe9fQrcDBQxYiSVocfc8I7gNuTPLXjN02WlVvGqQqSdLU9A2CdTz8WQKSpANA39tH/3ToQiRJi6PvXUMvAt4JPLXbJkBV1c8NV5okaRr6Xhr6CPB7wEYWeDKZJGlp6RsEd1fV5watRJK0KPoGwd8kWQtcyU/eNXT9IFVJkqambxC8oPtzdqytgF+YbDmSpGnre9fQy4YuRJK0OPo+qvKwJB9IsqF7vT/JYUMXJ0kaXt8pJi4HfgT8u+51D6PHV0qSlri+nxEcW1W/Obb8riQ3DlGQJGm6+p4R7Ezy4j0L3RfMdg5TkiRpmvqeEfw28Kfd5wIB7sJHVUrSAaHvXUM3AickeWK3fM+gVUmSpmafQZDk9/fSDkBVfWCAmiRJU7TQGcETuj/XAM/noamofw0fUylJB4R9BkFVvQsgyV8Bz62qH3XL7wT+1+DVSZIG1/euoaOB+8eW7wdWT7waSdLU9Q2CPwO+luSdSd4BfBVY8GE1SU5NsjnJliQX7KPf85PsTvKKnvVIkiZkwbuGMvpk+OPA54CXdM1nV9UNC2y3DLgY+GVgK3BdknVVdcs8/S4E1u9/+ZKkR2rBIKiqSnJVVT0P2J9pp08EtlTVrQBJrgDOAG6Z0+93gU8z+jBakjRlfS8NXZtkfw/Uq4Dbx5a3dm3/LMkq4DeAS/a1oyTn7Jnwbvv27ftZhiRpX/oGwcsYhcG3k9yUZFOSmxbYJvO01ZzlDwJvrap9Pv6yqi6tqtmqmp2ZmelZsiSpj75TTJwGHM5DnxFcA+xYYJutwFFjy0cC2+b0mQWu6L6gthI4PcmuqrqqZ12SpEeo7xnBmYzuHFoJzHQ///oC21wHHJfkmCSHAGfx0BfSAKiqY6pqdVWtBv4S+B1DQJKmq+8ZwRuAk6rqXoAkFwJfAf773jaoql1JzmN0N9Ay4PKqujnJud36fX4uIEmajr5BEGD8Ov5u5v8M4CdU1dXA1XPa5g2Aqnp9z1okSRPUNwg+Cnw1yf/uls8EPjJMSZKkaeo7DfUHknwReDGjM4EFv1AmSVoa+p4RUFXXs39fKJMkLQF97xqSJB2gDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNGzQIkpyaZHOSLUkumGf9a5Lc1L2+nOSEIeuRJD3cYEGQZBlwMXAacDzwqiTHz+n2HeClVfUs4N3ApUPVI0ma35BnBCcCW6rq1qq6H7gCOGO8Q1V9uap+2C1eCxw5YD2SpHkMGQSrgNvHlrd2bXvzBuBz861Ick6SDUk2bN++fYIlSpKGDILM01bzdkxexigI3jrf+qq6tKpmq2p2ZmZmgiVKkg4acN9bgaPGlo8Ets3tlORZwGXAaVX1DwPWI0max5BnBNcBxyU5JskhwFnAuvEOSY4GrgReW1XfGrAWSdJeDHZGUFW7kpwHrAeWAZdX1c1Jzu3WXwK8HXgS8OEkALuqanaomiRJD5eqeS/bP2rNzs7Whg0bFrsMSVpSkmzc2y/afrNYkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGHTTkzpOcCnwIWAZcVlXvnbM+3frTgfuA11fV9ZOu46ob7mDt+s1s27GTI1Ys5/xT1nDmc1ZN+m0kaRBDH8MGC4Iky4CLgV8GtgLXJVlXVbeMdTsNOK57vQD4k+7Pibnqhjt425Wb2PnAbgDu2LGTt125CcAwkPSoN41j2JCXhk4EtlTVrVV1P3AFcMacPmcAH6+Ra4EVSZ4yySLWrt/8z/8B99j5wG7Wrt88ybeRpEFM4xg2ZBCsAm4fW97ate1vH5Kck2RDkg3bt2/fryK27di5X+2S9GgyjWPYkEGQedrqp+hDVV1aVbNVNTszM7NfRRyxYvl+tUvSo8k0jmFDBsFW4Kix5SOBbT9Fn0fk/FPWsPzgZT/RtvzgZZx/yppJvo0kDWIax7Ahg+A64LgkxyQ5BDgLWDenzzrgdRk5Cbi7qr4/ySLOfM4q3vPyZ7JqxXICrFqxnPe8/Jl+UCxpSZjGMSxVD7sSM7mdJ6cDH2R0++jlVfVfk5wLUFWXdLePXgScyuj20bOrasO+9jk7O1sbNuyziyRpjiQbq2p2vnWDfo+gqq4Grp7TdsnYzwW8ccgaJEn75jeLJalxBoEkNc4gkKTGGQSS1LhB7xoaQpLtwPd+ys1XAndOsJylwDG3wTG34ZGM+alVNe83cpdcEDwSSTbs7fapA5VjboNjbsNQY/bSkCQ1ziCQpMa1FgSXLnYBi8Axt8Ext2GQMTf1GYEk6eFaOyOQJM1hEEhS4w7IIEhyapLNSbYkuWCe9Unyx936m5I8dzHqnKQeY35NN9abknw5yQmLUeckLTTmsX7PT7I7ySumWd8Q+ow5yclJbkxyc5K/nXaNk9bj3/ZhST6b5OvdmM9ejDonJcnlSX6Q5Bt7WT/541dVHVAvRlNefxv4OeAQ4OvA8XP6nA58jtET0k4CvrrYdU9hzP8KOLz7+bQWxjzW7/8ymgX3FYtd9xT+nlcAtwBHd8v/YrHrnsKY/zNwYffzDHAXcMhi1/4IxvyvgecC39jL+okfvw7EM4ITgS1VdWtV3Q9cAZwxp88ZwMdr5FpgRZKnTLvQCVpwzFX15ar6Ybd4LaOnwS1lff6eAX4X+DTwg2kWN5A+Y341cGVV3QZQVUt93H3GXMATuuebHMooCHZNt8zJqaprGI1hbyZ+/DoQg2AVcPvY8taubX/7LCX7O543MPqNYilbcMxJVgG/AVzCgaHP3/PTgMOTfDHJxiSvm1p1w+gz5ouAZzB6zO0m4M1V9eB0ylsUEz9+DfpgmkWSedrm3iPbp89S0ns8SV7GKAhePGhFw+sz5g8Cb62q3aNfFpe8PmM+CHge8IvAcuArSa6tqm8NXdxA+oz5FOBG4BeAY4EvJPm7qrpn6OIWycSPXwdiEGwFjhpbPpLRbwr722cp6TWeJM8CLgNOq6p/mFJtQ+kz5lngii4EVgKnJ9lVVVdNp8SJ6/tv+86quhe4N8k1wAnAUg2CPmM+G3hvjS6gb0nyHeDpwNemU+LUTfz4dSBeGroOOC7JMUkOAc4C1s3psw54Xffp+0nA3VX1/WkXOkELjjnJ0cCVwGuX8G+H4xYcc1UdU1Wrq2o18JfA7yzhEIB+/7Y/A7wkyUFJHge8APjmlOucpD5jvo3RGRBJngysAW6dapXTNfHj1wF3RlBVu5KcB6xndMfB5VV1c5Jzu/WXMLqD5HRgC3Afo98olqyeY3478CTgw91vyLtqCc/c2HPMB5Q+Y66qbyb5PHAT8CBwWVXNexviUtDz7/ndwMeSbGJ02eStVbVkp6dO8hfAycDKJFuBdwAHw3DHL6eYkKTGHYiXhiRJ+8EgkKTGGQSS1DiDQJIaZxBIUuMMAglI8uMJ7OPqJCsmUY80Td4+KjEKgqo6dLHrkBaDZwRqTpKrugnZbk5yzlj7+5Ncn+Svk8x0bW9Kcks37/sVXduhST6aZFPX/ptd+3eTrEzy+CT/p5sf/xtJXtmtf+/Yvt7Xtc0k+XSS67rXi7r2l3bPFLgxyQ1JnjDt/05qh2cEak6Sn62qu5IsZzSFwUuBO4HfqqpPJnk7o3n8z0uyDTimqv4pyYqq2pHkQuBnquot3f4Or6ofJvkuo/mNXgqcWlX/sVt/GKNvxX4FeHpV1di+/hz4cFX9fTcNyPqqekaSzzKaP+dLSQ4F/rGqluzUynp084xALXpTkq8zei7DUcBxjKZj+J/d+k/w0OysNwGfTPJbPDTH/S8BF+/Z2dhzHvbYBPxSkguTvKSq7gbuAf4RuCzJyxlNDbBnXxcluZHRHDJP7H77/xLwgSRvAlYYAhqSQaCmJDmZ0cH3hVV1AnAD8Nh5uu45Vf4VRgf95wEbkxzEaD6bvZ5Kd5P6PY9RILwnydu7A/mJjB6Scybw+a77Y7pant29VlXVj6rqvcB/YDSV9LVJnv5Ixi3ti0Gg1hwG/LCq7usOrid17Y8B9jzT+NXA3yd5DHBUVf0N8AeMHgN5KPBXwHl7dpjk8PE3SHIEcF9VfQJ4H/Dc7vLOYVV1NfAW4Nld97n7enb357FVtamqLgQ2MJpWWRrEATf7qLSAzwPnJrkJ2Mzo8hDAvcDPJ9kI3A28ktF1/U901/gD/Lfuuv4fAhdn9HDx3cC7GE3xvcczgbVJHgQeAH4beALwmSSP7fb1e13fN3X7uonR/4/XAOcCb8noIUK7GT2DeKk/UU6PYn5YLEmN89KQJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmN+/8pb/TkQj7+HAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "r = 0.0\n" ] } ], "source": [ "from pylab import *\n", "\n", "x = [0,1,0,1]\n", "y = [0,0,1,1]\n", "\n", "scatter(x, y)\n", "xlabel(\"abscisses\")\n", "ylabel(\"ordonnees\")\n", "title(\"TITRE\")\n", "show()\n", "\n", "print(\"r = \",coefficientCorrelation(x,y))" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAY0klEQVR4nO3de7BdZZ3m8e9DiBpBDEjABNAgRaGoJeARY6O2KBQau4W2vWCPio4zlJY2oiM9MFbZOtU9QmPTare2TYEaB7yLwNgIYsSitQAJFwmXQVARQzISlXCNcvE3f+x1dHPce2UnOfvsfXK+n6pVZ613vftd7zovnCfrstdKVSFJUj/bjboDkqTxZlBIkloZFJKkVgaFJKmVQSFJamVQSJJaGRSSpFYGhTSgJPd1Tb9LsrFr+T8l+WCSs5I8ZUrdSnJ/1/KLknw2yYPN8q+TXJzk6V3bekuSR6a0c1+SJaP8HWhuMiikAVXVjpMTcDvw511lZ3fVu31KXYDndJX9R1P2D836PYA7gDOnbPKy7naaae2w91OayqCQRqyqNgJfBg4YdV+kXgwKacSS7AC8Abh11H2RetlmgyLJp5PcmeT6aWjr0CTXdk2/SXLUgJ99epLLkvw2yfta6u2d5IoktyT5UpLHNOVJ8vEktya5LslBXZ95eZKbm3UndpXv0pzzvqX5uXPXupOa+jcnOaKr/LlJVjfrPp4kTfmLk1yd5OEkr9m835w24X1JNgD3Ai8E3jRl/bIkG7qmH898F6VtOCiAzwIvn46GquqSqjqgqg4AXgo8AHxrar0kt/X4+K+B44CPbGIzpwD/VFX7AncBb2vKXwHs20zHAv/abGse8Ilm/f7AG5Ls33zmRGBl09bKZplm/dHAM+n8bj7ZtEPT7rFd25r83d0OvAX4/Cb6r833kapaCCwFNgL7TVl/eVUt7Jr2mfEeSmzDQVFVl9L5I/17SfZJcmGSq5L8R/ddJpvhNcA3q+qBAftxZ1VdCTzUr07zr/eXAl9tilYAk0csRwKfq47LgYVJFgMHA7dW1U+q6kHgi03dyc+s6NPWF6vqt1X1UzqnOg5u2tupqi6rzuOEPzf5maq6raquA343yP5q81XV7cC7gY8lWTDq/khTbbNB0cfpwF9X1XOB9wGf3II2jga+MK29gicBG6rq4WZ5DZ07YWh+/ryr7uS6fuUAu1fVOoDm524DtLWmT1uaAVV1MbCWzlGdNFa2H3UHZkqSHYE/Ab7SnH4HeGyz7tXA/+zxsTuqqvs8/mLg2cBFXWWfAA5pFpckubaZ/0pV/f2g3etRVptY1/aZzd3OlrSl6XcqcFqSTzXLL0hy35Q6hzZHqNKMmTNBQefoaUNzneFRquoc4JwB2ngd8PWq+v1ppKp65+R8ktt6tT+AX9I5pbR9c1SxJ51/XULnX/d7ddWdXPeYPuUAv0iyuKrWNeF25ybaWtPM92pLPVTV0h5lH+xT94+CuKre0qPsS8CXmsXPNpM0cnPm1FNV3QP8NMlr4fd3Ez1nM5t5A9N/2onmusAldK5/ABwDnNfMnw+8uenvMuDu5nTSlcC+zd1Sj6FzSuz8rs8c06eto5M8NsnedC5a/6Bp794ky5rrJW/u+oykua6qtsmJzh/0dXQuIq+hcxfR3sCFwA+BG4EPbEZ7S+l8e3a7ljq39Sh7crP9e4ANzfxOzboLgCXN/NOAH9C5wPwV4LFNeejc3fRjYDUw0dX2cuBHzbr3d5U/ic7dTrc0P3fpWvf+pv7NwCu6yieA65t1/wKkKX9e0+f7gV8BN4x6bJ2cnGZ2mvxjIElST3Pm1JMkactskxezd91111q6dOmouyFJs8ZVV131y6pa1GvdNhkUS5cuZdWqVaPuhiTNGkl+1m+dp54kSa0MCklSK4NCktTKoJAktTIoJEmtRhoU/V6807W+70t7JEkd515zB4ec/B32PvHfOeTk73DuNXdMa/sjuz2268U7h9N5RMSVSc6vqhu7qnW/tOf5dF6u8/yZ7qskjatzr7mDk85ZzcaHHgHgjg0bOemc1QAcdeD0vC1glEcUbS/emdTvpT2SJODUi27+fUhM2vjQI5x60c3Tto1RBkXbi3c2pw4ASY5NsirJqvXr109rRyVpXK3dsHGzyrfEKINikJflDPxCnao6vaomqmpi0aKe30KXpG3OkoW9357br3xLjDIo+r1EZ3PrSNKcdcIR+7Fg/rxHlS2YP48Tjthv2rYxyqBoe/HOpH4v7ZEk0blg/eFXP5s9Fi4gwB4LF/DhVz972i5kwwjveqqqh5O8i877p+cBn66qG5K8vVn/KTov9llO52U+DwBvHVV/JWlcHXXgHtMaDFON9OmxVXUBnTDoLvtU13wB75z6OUnSzPGb2ZKkVgaFJKmVQSFJamVQSJJaGRSSpFYGhSSplUEhSWplUEiSWhkUkqRWBoUkqZVBIUlqZVBIkloZFJKkVgaFJKmVQSFJamVQSJJaGRSSpFYGhSSplUEhSWplUEiSWhkUkqRWBoUkqZVBIUlqZVBIkloZFJKkVgaFJKmVQSFJamVQSJJaGRSSpFYGhSSplUEhSWo1kqBIskuSi5Pc0vzcuUedvZJckuSmJDckefco+ipJc92ojihOBFZW1b7AymZ5qoeB/1ZVzwCWAe9Msv8M9lGSxOiC4khgRTO/AjhqaoWqWldVVzfz9wI3AXvMWA8lScDogmL3qloHnUAAdmurnGQpcCBwRUudY5OsSrJq/fr109hVSZrbth9Ww0m+DTy5x6r3b2Y7OwJfA46vqnv61auq04HTASYmJmpztiFJ6m9oQVFVh/Vbl+QXSRZX1boki4E7+9SbTyckzq6qc4bUVUlSi1GdejofOKaZPwY4b2qFJAHOBG6qqtNmsG+SpC6jCoqTgcOT3AIc3iyTZEmSC5o6hwBvAl6a5NpmWj6a7krS3DW0U09tqupXwMt6lK8Fljfz3wMyw12TJE3hN7MlSa0MCklSK4NCktTKoJAktTIoJEmtDApJUiuDQpLUyqCQJLUyKCRJrQwKSVIrg0KS1MqgkCS1MigkSa0MCklSK4NCktTKoJAktTIoJEmtDApJUiuDQpLUyqCQJLUyKCRJrQwKSVIrg0KS1MqgkCS1MigkSa0MCklSK4NCktTKoJAktTIoJEmtNjsokmyXZKdhdEaSNH4GCookn0+yU5IdgBuBm5OcsKUbTbJLkouT3NL83Lml7rwk1yT5xpZuT5K05QY9oti/qu4BjgIuAJ4CvGkrtnsisLKq9gVWNsv9vBu4aSu2JUnaCoMGxfwk8+kExXlV9RBQW7HdI4EVzfyKpt0/kmRP4JXAGVuxLUnSVhg0KP4NuA3YAbg0yVOBe7Ziu7tX1TqA5udufep9FPgb4HebajDJsUlWJVm1fv36reiaJKnb9oNUqqqPAx/vKvpZkkPbPpPk28CTe6x6/yDbTPJnwJ1VdVWSlwzQx9OB0wEmJia25mhHktRloKBIsjvwv4AlVfWKJPsDLwDO7PeZqjqspb1fJFlcVeuSLAbu7FHtEOBVSZYDjwN2SnJWVb1xkD5LkqbHoKeePgtcBCxpln8EHL8V2z0fOKaZPwY4b2qFqjqpqvasqqXA0cB3DAlJmnmDBsWuVfVlmmsFVfUw8MhWbPdk4PAktwCHN8skWZLkgq1oV5I0zQY69QTcn+RJNHc6JVkG3L2lG62qXwEv61G+Fljeo/y7wHe3dHuSpC03aFC8l87pon2SfB9YBLxmaL2SJI2NQe96ujrJnwL7AQFubr5LIUnaxg36CI/H0/n29PFVdT2wtLl9VZK0jRv0YvZngAfp3BILsAb4u6H0SJI0VgYNin2q6h+AhwCqaiOdU1CSpG3coEHxYJIF/OGup32A3w6tV5KksTHoXU9/C1wI7JXkbDrfmn7LsDolSRofg971dHGSq4FldE45vbuqfjnUnkmSxsKgRxTQed7SXc1n9k9CVV06nG5JksbFoA8FPAV4PXADf3jkdwEGhSRt4wY9ojgK2K+qvIAtSXPMoHc9/QSYP8yOSJLG06BHFA8A1yZZSddtsVV13FB6JUkaG4MGxfnNJEmaYwa9PXbFsDsiSRpPg971dAjwQeCpzWcCVFU9bXhdkySNg0FPPZ0JvAe4iq17s50kaZYZNCjurqpvDrUnkqSxNGhQXJLkVOAcHn3X09VD6ZUkaWwMGhTPb35OdJUV8NLp7Y4kadwMetfTocPuiCRpPA36KtQnJjktyapm+sckTxx25yRJozfoIzw+DdwLvK6Z7qHzelRJ0jZu0GsU+1TVX3YtfyjJtcPokCRpvAx6RLExyQsnF5ov4G0cTpckSeNk0COKdwArmusSAX6Nr0KVpDlh0LuergWek2SnZvmeofZKkjQ2WoMiyXv7lANQVacNoU+SpDGyqSOKJzQ/9wOexx8eNf7n+BpUSZoTWoOiqj4EkORbwEFVdW+z/EHgK0PvnSRp5Aa96+kpwINdyw8CS6e9N5KksTPoXU//G/hBkq/TecbTXwBb/DKjJLsAX6ITNrcBr6uqu3rUWwicATyr2e5/rqrLtnS7kqTNt8kjinSuXH8OeCtwF7ABeGtVfXgrtnsisLKq9gVWNsu9fAy4sKqeDjwHuGkrtilJ2gKbPKKoqkpyblU9F5iux4ofCbykmV8BfBf4790VmltxX0zzfY2qepBHn/6SJM2AQa9RXJ7kedO43d2rah1A83O3HnWeBqwHPpPkmiRnJNmhX4NJjp18aOH69eunsauSNLcNGhSH0gmLHye5LsnqJNe1fSDJt5Nc32M6csBtbg8cBPxrVR0I3E//U1RU1elVNVFVE4sWLRpwE5KkTRn0YvYrgJ2BFzXLl9K5VtFXVR3Wb12SXyRZXFXrkiwG7uxRbQ2wpqquaJa/SktQSJKGY9AjiqPo3Pm0K7ComX/VVmz3fOCYZv4Y4LypFarq/wE/T7JfU/Qy4Mat2KYkaQsMekTxNmBZVd0PkOQU4DLgn7dwuycDX07yNuB24LVNu0uAM6pqeVPvr4GzkzwG+AmdO68kSTNo0KAI8EjX8iNN2Rapql/ROUKYWr4WWN61fC2Pfk+3JGmGDRoUnwGuaL5wB51TUWcOp0uSpHEy6GPGT0vyXeCFdI4k3lpV1wyzY5Kk8TDoEQVVdTXT94U7SdIsMehdT5KkOcqgkCS1MigkSa0MCklSK4NCktTKoJAktTIoJEmtDApJUiuDQpLUyqCQJLUyKCRJrQwKSVIrg0KS1MqgkCS1MigkSa0MCklSK4NCktTKoJAktTIoJEmtDApJUiuDQpLUyqCQJLUyKCRJrQwKSVIrg0KS1MqgkCS1MigkSa1GEhRJdklycZJbmp8796n3niQ3JLk+yReSPG6m+ypJc92ojihOBFZW1b7Aymb5UZLsARwHTFTVs4B5wNEz2ktJ0siC4khgRTO/AjiqT73tgQVJtgceD6ydgb5JkrqMKih2r6p1AM3P3aZWqKo7gI8AtwPrgLur6lv9GkxybJJVSVatX79+SN2WpLlnaEGR5NvNtYWp05EDfn5nOkceewNLgB2SvLFf/ao6vaomqmpi0aJF07MTkiS2H1bDVXVYv3VJfpFkcVWtS7IYuLNHtcOAn1bV+uYz5wB/Apw1lA5Lknoa1amn84FjmvljgPN61LkdWJbk8UkCvAy4aYb6J0lqjCooTgYOT3ILcHizTJIlSS4AqKorgK8CVwOrm76ePpruStLclaoadR+m3cTERK1atWrU3ZCkWSPJVVU10Wud38yWJLUyKCRJrQwKSVIrg0KS1MqgkCS1MigkSa0MCklSK4NCktTKoJAktTIoJEmtDApJUiuDQpLUyqCQJLUyKCRJrQwKSVIrg0KS1MqgkCS1MigkSa0MCklSK4NCktTKoJAktTIoJEmtDApJUiuDQpLUyqCQJLUyKCRJrQwKSVIrg0KS1MqgkCS1MigkSa0MCklSq+1HsdEkrwU+CDwDOLiqVvWp93LgY8A84IyqOnlYfTr3mjs49aKbWbthI0sWLuCEI/bjqAP3GNbmNADHZDw5LnPPSIICuB54NfBv/SokmQd8AjgcWANcmeT8qrpxujtz7jV3cNI5q9n40CMA3LFhIyedsxrA/wFGxDEZT47L3DSSU09VdVNV3byJagcDt1bVT6rqQeCLwJHD6M+pF938+//wJ2186BFOvWhTXdSwOCbjyXGZm8b5GsUewM+7ltc0ZT0lOTbJqiSr1q9fv1kbWrth42aVa/gck/HkuMxNQwuKJN9Ocn2PadCjgvQoq36Vq+r0qpqoqolFixZtVl+XLFywWeUaPsdkPDkuc9PQgqKqDquqZ/WYzhuwiTXAXl3LewJrp7+ncMIR+7Fg/rxHlS2YP48TjthvGJvTAByT8eS4zE2jupg9iCuBfZPsDdwBHA381TA2NHkRzjs5xodjMp4cl7kpVX3P5gxvo8lfAP8MLAI2ANdW1RFJltC5DXZ5U2858FE6t8d+uqr+fpD2JyYmatWqnnfcSpJ6SHJVVU30WjeSI4qq+jrw9R7la4HlXcsXABfMYNckSVOM811PkqQxYFBIkloZFJKkVgaFJKnVSO56GrYk64GfbeHHdwV+OY3dGaVtZV+2lf0A92UcbSv7AVu3L0+tqp7fVt4mg2JrJFnV7xax2WZb2ZdtZT/AfRlH28p+wPD2xVNPkqRWBoUkqZVB8cdOH3UHptG2si/byn6A+zKOtpX9gCHti9coJEmtPKKQJLUyKCRJreZkUCT5dJI7k1zfZ32SfDzJrUmuS3LQTPdxUAPsy0uS3J3k2mb6wEz3cRBJ9kpySZKbktyQ5N096syKcRlwX8Z+XJI8LskPkvyw2Y8P9agzW8ZkkH0Z+zHplmRekmuSfKPHuukdl6qacxPwYuAg4Po+65cD36Tzlr1lwBWj7vNW7MtLgG+Mup8D7Mdi4KBm/gnAj4D9Z+O4DLgvYz8uze95x2Z+PnAFsGyWjskg+zL2YzKlv+8FPt+rz9M9LnPyiKKqLgV+3VLlSOBz1XE5sDDJ4pnp3eYZYF9mhapaV1VXN/P3Ajfxx+9InxXjMuC+jL3m93xfszi/mabe/TJbxmSQfZk1kuwJvBI4o0+VaR2XORkUA9gD+HnX8hpm4f/oXV7QHHJ/M8kzR92ZTUmyFDiQzr/6us26cWnZF5gF49Kc3rgWuBO4uKpm7ZgMsC8wC8ak8VHgb4Df9Vk/reNiUPSWHmWz9V8fV9N5hstz6LxV8NwR96dVkh2BrwHHV9U9U1f3+MjYjssm9mVWjEtVPVJVB9B5Z/3BSZ41pcqsGZMB9mVWjEmSPwPurKqr2qr1KNvicTEoelsD7NW1vCewdkR92SpVdc/kIXd13hg4P8muI+5WT0nm0/nDenZVndOjyqwZl03ty2waF4Cq2gB8F3j5lFWzZkwm9duXWTQmhwCvSnIb8EXgpUnOmlJnWsfFoOjtfODNzZ0Dy4C7q2rdqDu1JZI8OUma+YPpjPmvRturP9b08Uzgpqo6rU+1WTEug+zLbBiXJIuSLGzmFwCHAf93SrXZMiab3JfZMCYAVXVSVe1ZVUuBo4HvVNUbp1Sb1nEZyTuzRy3JF+jc4bBrkjXA39K5uEVVfYrOe7qXA7cCDwBvHU1PN22AfXkN8I4kDwMbgaOruS1izBwCvAlY3ZxHBvgfwFNg1o3LIPsyG8ZlMbAiyTw6fzS/XFXfSPJ2mHVjMsi+zIYx6WuY4+IjPCRJrTz1JElqZVBIkloZFJKkVgaFJKmVQSFJamVQSANKct+ma22yjQsm7+eXZgtvj5UGlOS+qtpx1P2QZppHFFIPSc5NclXz7oJju8r/McnVSVYmWdSUHZfkxua5/19synZM8pkkq5vyv2zKb0uya5Idkvx78wC665O8vll/cldbH2nKFiX5WpIrm+mQpvxP84d3J1yT5Akz/XvS3OARhdRDkl2q6tfN4x6uBP4U+CXwxqo6O52X2uxWVe9KshbYu6p+m2RhVW1Icgrw2Ko6vmlv56q6q3k+z0TT3sur6r82658IzAMuA55eVdXV1ueBT1bV95I8Bbioqp6R5P8AJ1fV95sHEP6mqh6eyd+T5gaPKKTejkvyQ+ByOg9X25fOI52/1Kw/C3hhM38dcHaSNwKTf6gPAz4x2VhV3TWl/dXAYUlOSfKiqrobuAf4DXBGklfTefTCZFv/0jwO5Hxgp+bo4fvAaUmOAxYaEhoWg0KaIslL6PxxfkHzyOlrgMf1qDp5OP5KOqHwXOCqJNvTecxz38P1qvpRU3818OEkH2j+0B9M56mzRwEXNtW3a/pyQDPtUVX3VtXJwH8BFgCXJ3n61uy31I9BIf2xJwJ3VdUDzR/fZU35dnQeHAfwV8D3kmwH7FVVl9B5kcxCYEfgW8C7JhtMsnP3BpIsAR6oqrOAjwAHNaePntg84vp44ICm+tS2Dmh+7lNVq6vqFGAVYFBoKObk02OlTbgQeHuS64Cb6Zx+ArgfeGaSq4C7gdfTua5wVnONIcA/NdcV/g74RJLrgUeADwHd76V4NnBqkt8BDwHvoPN+7fOSPK5p6z1N3eOatq6j8//spcDbgeOTHNq0fyOddyRL086L2ZKkVp56kiS1MigkSa0MCklSK4NCktTKoJAktTIoJEmtDApJUqv/D1osjskCX/dtAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "r = 0.7745966692414834\n" ] } ], "source": [ "from pylab import *\n", "\n", "x = [1,2,3,4]\n", "y = [1,1,1,1.0000001]\n", "\n", "scatter(x, y)\n", "xlabel(\"abscisses\")\n", "ylabel(\"ordonnees\")\n", "title(\"TITRE\")\n", "show()\n", "\n", "print(\"r = \",coefficientCorrelation(x,y))" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAVLUlEQVR4nO3df7BcZ33f8fcHWRNusUGmFsQyBlEPI3BJscnFNWMoEGhkEgKm+UGhMA6hcZKBASegFJGZANPMxERgwjT0h4MBp5gQOgjhpgbheugQGKBcWcYyuKKEcRxLLpYHCxu4iWX52z/2yLm+1o+90p5d7z7v18zO3fPs2T3fo7v7uUfPefY5qSokSe141KQLkCSNl8EvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwq1lJfrjk9kCSxSXL/ybJu5J8LMmTl61bSX60ZPn5ST6a5L5u+ftJrkvy9CXb+tUkB5e9zg+TrJvkv4HaZPCrWVV18qEbcBvwC0varl6y3m3L1gV41pK2v+ra/qh7/AxgD3Dlsk1+ZenrdLe9fe+ntJzBL41YVS0CnwTOmXQt0uEY/NKIJXkM8GrgO5OuRTocg18anbcl2Q/cCzwPeN2yx89Psn/J7a/HX6Jk8Euj9N6qWgOsBxaBDcse/2pVrVlyO2vsFUoY/NLIVdVtwFuADySZm3Q90nIGv9SDqroO2AtcMulapOUMfqk/W4DfTfIT3fJzDzOO/zmTLFBtihdikaS2eMQvSY0x+CWpMQa/JDXG4Jekxpw06QKGcdppp9X69esnXYYkTZUdO3bcVVVrl7dPRfCvX7+ehYWFSZchSVMlyd8crt2uHklqjMEvSY0x+CWpMQa/JDXG4JekxvQ2qifJmcCfAT8JPABcUVUfSPIu4NeBfd2q76iqa0e9/W0797Bl+2727l9k3Zo5Nm3cwEXnnjHqzUhSL/rMsD6Hc94PvLWqbkhyCrAjyXXdY++vqvf2teFtO/eweesuFg8cBGDP/kU2b90FYPhLesTrO8N66+qpqjuq6obu/r3ALcBYUnfL9t0P/oMdsnjgIFu27x7H5iXphPSdYWPp40+yHjgX+FrX9KYkNyX5cJJTj/CcS5IsJFnYt2/f4VY5or37F1fULkmPJH1nWO/Bn+Rk4FPApVV1D/CfgLOAc4A7gPcd7nlVdUVVzVfV/Nq1D/vG8VGtW3P4q90dqV2SHkn6zrBegz/Jagahf3VVbQWoqu9V1cGqegD4U+C8UW9308YNzK1e9ZC2udWr2LRx+bWvJemRp+8M63NUT4ArgVuq6vIl7adX1R3d4iuBm0e97UMnPxzVI2ka9Z1hvV16McnzgL8CdjEYzgnwDuDVDLp5CrgV+I0lfwgOa35+vpykTZJWJsmOqppf3t7bEX9VfQnIYR4a+Zh9SdLw/OauJDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mN6S34k5yZ5AtJbknyzSRv6dofn+S6JP+3+3lqXzVIkh6uzyP++4G3VtUzgPOBNyY5G3g7cH1VPQ24vluWJI1Jb8FfVXdU1Q3d/XuBW4AzgFcAV3WrXQVc1FcNkqSHG0sff5L1wLnA14AnVtUdMPjjADzhCM+5JMlCkoV9+/aNo0xJakLvwZ/kZOBTwKVVdc+wz6uqK6pqvqrm165d21+BktSYXoM/yWoGoX91VW3tmr+X5PTu8dOBO/usQZL0UH2O6glwJXBLVV2+5KFrgIu7+xcDn+mrBknSw53U42tfALwO2JXkxq7tHcBlwCeTvAG4DfjlHmuQJC3TW/BX1ZeAHOHhF/e1XUnS0fnNXUlqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1JiTJl3ALNq2cw9btu9m7/5F1q2ZY9PGDVx07hmTLkvSCs3qZ9ngH7FtO/eweesuFg8cBGDP/kU2b90FMBNvGKkVs/xZtqtnxLZs3/3gG+WQxQMH2bJ994QqknQ8ZvmzbPCP2N79iytql/TINMufZYN/xNatmVtRu6RHpln+LBv8I7Zp4wbmVq96SNvc6lVs2rhhQhVJOh6z/Fn25O6IHTrpM4sjAaSWzPJnOVW1sickjwJOrqp7+inp4ebn52thYWFcm5OkmZBkR1XNL28fqqsnyceTPDbJY4BvAbuTbDrGcz6c5M4kNy9pe1eSPUlu7G4/t9IdkSSdmGH7+M/ujvAvAq4Fngy87hjP+Shw4WHa319V53S3a4euVJI0EsMG/+okqxkE/2eq6gBw1D6iqvoi8P0TrE+SNGLDBv9/AW4FHgN8MclTgOPt439Tkpu6rqBTj7RSkkuSLCRZ2Ldv33FuSpK03IpP7j74xOSkqrr/GOusB/6yqp7ZLT8RuIvB/xb+PXB6Vf3asbblyV1JWrkTPbn7xCRXJvlst3w2cPFKi6iq71XVwap6APhT4LyVvoYk6cQM29XzUWA7sK5b/jZw6Uo3luT0JYuvBG4+0rqSpH4M+wWu06rqk0k2A1TV/UkOHu0JSf4ceCFwWpLbgXcCL0xyDoOunluB3zjewiVJx2fY4P9Rkn9MN5InyfnAD472hKp69WGar1xZeZKkURs2+H8HuAY4K8mXgbXAL/VWlSSpN0MFf1XdkOQFwAYgwO5uLL8kacoMO6rnHwFvBy6tqpuB9Ule1mtlkqReDDuq5yPAfcBzu+XbgT/opSJJUq+GDf6zquqPgAMAVbXIoMtHkjRlhg3++5LM8Q+jes4C/r63qiRJvRl2VM87gc8BZya5GrgA+NW+ipIk9WfYUT3XJbkBOJ9BF89bququXiuTJPViJZdefDRwd/ecs5McmnpZkjRFhgr+JO8BXgV8E3igay7A4JekKTPsEf9FwIaq8oSuJE25YUf1fBdY3WchkqTxGPaI/8fAjUmuZ8kwzqp6cy9VSZJ6M2zwX9PdJElTbtjhnFf1XYgkaTyGHdVzAfAu4CndcwJUVf2T/kqTJPVh2K6eK4HfBnYAR73yliTpkW3Y4P9BVX2210okSWMxbPB/IckWYCsPHdVzQy9VSZJ6M2zw//Pu5/yStgJ+ZrTlSJL6Nuyonhf1XYgkaTyGvfTi45JcnmShu70vyeP6Lk6SNHrDTtnwYeBe4Fe62z0MLscoSZoyw/bxn1VVv7hk+d1JbuyjIElSv4Y94l9M8rxDC90Xuhb7KUmS1Kdhj/h/C7iq69cP8H289KIkTaVhR/XcCDwryWO75Xt6rUqS1JujBn+S3zlCOwBVdXkPNUmSenSsI/5Tup8bgOfwD1Mz/wJedlGSptJRg7+q3g2Q5PPAs6vq3m75XcB/6706SdLIDTuq58nAfUuW7wPWj7waSVLvhh3V81+B/53k0wzm6HklcNSLsyT5MPAy4M6qembX9njgLxj80bgV+JWquvu4KpckHZdjHvFncCb3z4DXA3cD+4HXV9UfHuOpHwUuXNb2duD6qnoacH23LEkao2Me8VdVJdlWVT8NDD0Nc1V9Mcn6Zc2vAF7Y3b8K+F/Avxv2NSVJJ27YPv6vJnnOCLb3xKq6A6D7+YQjrZjkkkOTwu3bt28Em5YkwfDB/yIG4f/XSW5KsivJTX0WVlVXVNV8Vc2vXbu2z01JUlOGPbn7UuBU4Pnd8hcZ9PWv1PeSnF5VdyQ5HbjzOF5DknQChj3iv4jByJ7TgLXd/Zcfx/auAS7u7l8MfOY4XkOSdAKGPeJ/A3B+Vf0IIMl7gK8A/+FIT0jy5wxO5J6W5HbgncBlwCeTvAG4Dfjl4y9dknQ8hg3+AAeXLB/s2o6oql59hIdePOQ2tULbdu5hy/bd7N2/yLo1c2zauIGLzj1j0mVJJ8z39mgNG/wfAb7WfYELBl0/V/ZTko7Htp172Lx1F4sHBn+f9+xfZPPWXQB+QDTVfG+P3lB9/N0snK9nMA//3Qy+wPXHfRamldmyffeDH4xDFg8cZMv23ROqSBoN39ujN+wRP1V1Ayv4ApfGa+/+w18Q7Ujt0rTwvT16w47q0SPcujVzK2qXpoXv7dEz+GfEpo0bmFu96iFtc6tXsWnjhglVJI2G7+3RG7qrR49sh05yOfJBs8b39uilqiZdwzHNz8/XwsLCpMuQpKmSZEdVzS9vt6tHkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMacNImNJrkVuBc4CNxfVfOTqEOSWjSR4O+8qKrumuD2JalJdvVIUmMmFfwFfD7JjiSXHG6FJJckWUiysG/fvjGXJ0mza1LBf0FVPRt4KfDGJP9i+QpVdUVVzVfV/Nq1a8dfoSTNqIkEf1Xt7X7eCXwaOG8SdUhSi8Ye/Ekek+SUQ/eBnwVuHncdktSqSYzqeSLw6SSHtv/xqvrcBOqQpCaNPfir6rvAs8a9XfVn2849bNm+m737F1m3Zo5NGzdw0blnTLosjZi/59kxyXH8mgHbdu5h89ZdLB44CMCe/Yts3roLwFCYIf6eZ4vj+HVCtmzf/WAYHLJ44CBbtu+eUEXqg7/n2WLw64Ts3b+4onZNJ3/Ps8Xg1wlZt2ZuRe2aTv6eZ4vBrxOyaeMG5lavekjb3OpVbNq4YUIVqQ/+nmeLJ3d1Qg6d2HO0x2zz9zxbUlWTruGY5ufna2FhYdJlSNJUSbLjcNPe29UjSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMV+DSVNu2c09zV4VqcZ81Wga/pta2nXvYvHUXiwcOArBn/yKbt+4CmNkgbHGfNXp29Whqbdm++8EAPGTxwEG2bN89oYr61+I+a/QMfk2tvfsXV9Q+C1rcZ42ewa+ptW7N3IraZ0GL+6zRM/g1tTZt3MDc6lUPaZtbvYpNGzdMqKL+tbjPGj1P7mpqHTqZ2dIIlxb3WaOXqpp0Dcc0Pz9fCwsLky5DkqZKkh1VNb+8fSJH/EkuBD4ArAI+VFWXTaIO6Xg5ll7TbOzBn2QV8EHgXwK3A19Pck1VfWvctUjHw7H0mnaTOLl7HvCdqvpuVd0HfAJ4xQTqkI6LY+k17SYR/GcAf7tk+fau7SGSXJJkIcnCvn37xlacdCyOpde0m0Tw5zBtDzvDXFVXVNV8Vc2vXbt2DGVJw3EsvabdJIL/duDMJctPAvZOoA7puDiWXtNuEqN6vg48LclTgT3AvwZeM4E6pOPiWHpNu7EHf1Xdn+RNwHYGwzk/XFXfHHcd0om46NwzDHpNrYmM46+qa4FrJ7FtSWqdc/VIUmMMfklqjMEvSY0x+CWpMVMxO2eSfcDfTLqO43AacNekixij1vYX3OdWTOs+P6WqHvYN2KkI/mmVZOFwU6LOqtb2F9znVszaPtvVI0mNMfglqTEGf7+umHQBY9ba/oL73IqZ2mf7+CWpMR7xS1JjDH5JaozBPwZJ3pakkpw26Vr6lmRLkv+T5KYkn06yZtI19SXJhUl2J/lOkrdPup6+JTkzyReS3JLkm0neMumaxiHJqiQ7k/zlpGsZFYO/Z0nOZHBh+dsmXcuYXAc8s6r+GfBtYPOE6+lFklXAB4GXAmcDr05y9mSr6t39wFur6hnA+cAbG9hngLcAt0y6iFEy+Pv3fuB3OczlJWdRVX2+qu7vFr/K4Aprs+g84DtV9d2qug/4BPCKCdfUq6q6o6pu6O7fyyAMZ/qiBEmeBPw88KFJ1zJKBn+Pkrwc2FNV35h0LRPya8BnJ11ET84A/nbJ8u3MeAgulWQ9cC7wtclW0rs/ZnDg9sCkCxmliVyIZZYk+Z/ATx7mod8D3gH87Hgr6t/R9rmqPtOt83sMugauHmdtY5TDtDXxv7okJwOfAi6tqnsmXU9fkrwMuLOqdiR54aTrGSWD/wRV1UsO157kp4CnAt9IAoMujxuSnFdV/2+MJY7ckfb5kCQXAy8DXlyz+0WR24Ezlyw/Cdg7oVrGJslqBqF/dVVtnXQ9PbsAeHmSnwMeDTw2yceq6rUTruuE+QWuMUlyKzBfVdM4w9/QklwIXA68oKr2TbqeviQ5icHJ6xcDe4CvA6+Z5etHZ3AEcxXw/aq6dNL1jFN3xP+2qnrZpGsZBfv4NWp/ApwCXJfkxiT/edIF9aE7gf0mYDuDk5yfnOXQ71wAvA74me53e2N3NKwp4xG/JDXGI35JaozBL0mNMfglqTEGvyQ1xuCXpMYY/GpWkh+O4DWuneUZSDWbHM6pZiX5YVWdPOk6pHHziF9NSLItyY5uHvlLlrS/L8kNSa5PsrZre3OSb3XXFPhE13Zyko8k2dW1/2LXfmuS05I8Jsn/SPKNJDcneVX3+GVLXuu9XdvaJJ9K8vXudkHX/oIlX4zameSUcf87qQ0e8asJSR5fVd9PMsdgeoUXAHcBr62qq5P8PvCEqnpTkr3AU6vq75Osqar9Sd4D/MShqQqSnFpVdx+aiqN7vQur6te7xx8HrAK+Ajy9qmrJa30c+I9V9aUkTwa2V9Uzkvx34LKq+nI3EdrfLZniWhoZj/jVijcn+QaDawScCTyNwVS7f9E9/jHged39m4Crk7yWwQyjAC9hcOEVAKrq7mWvvwt4SZL3JHl+Vf0AuAf4O+BDSf4V8OMlr/UnSW4ErmEw+dcpwJeBy5O8GVhj6KsvBr9mXjfB1kuA51bVs4CdDGZbXO7Qf39/nkHI/zSwo5uQLRxl2uWq+na3/i7gD5P8fhfc5zGYzfIi4HPd6o/qajmnu51RVfdW1WXAvwXmgK8mefqJ7Ld0JAa/WvA44O6q+nEXpud37Y8Cfqm7/xrgS0keBZxZVV9gcAGONcDJwOcZTMoGDLp6lm4gyTrgx1X1MeC9wLO77prHVdW1wKXAOd3qy1/rnO7nWVW1q6reAywABr964Xz8asHngN9MchOwm0F3D8CPgH+aZAfwA+BVDPrlP9b10Qd4f9cv/wfAB5PcDBwE3g0snY/+p4AtSR4ADgC/xWCW0s8keXT3Wr/drfvm7rVuYvAZ/CLwm8ClSV7Uvf63mN2rl2nCPLkrSY2xq0eSGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMb8f0c7L3nJ2+kNAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "r = 0.0\n" ] } ], "source": [ "from pylab import *\n", "\n", "x = [-5,-4,-3,-2,-1,0,1,2,3,4,5]\n", "y = [i**2 for i in x]\n", "\n", "scatter(x, y)\n", "xlabel(\"abscisses\")\n", "ylabel(\"ordonnees\")\n", "title(\"TITRE\")\n", "show()\n", "\n", "print(\"r = \",coefficientCorrelation(x,y))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "https://fr.wikipedia.org/wiki/Quartet_d%27Anscombe\n", "\n", "https://www.lemonde.fr/les-decodeurs/article/2019/01/02/correlation-ou-causalite-brillez-en-societe-avec-notre-generateur-aleatoire-de-comparaisons-absurdes_5404286_4355770.html\n", "\n", "https://tylervigen.com/spurious-correlations\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 2 }