{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Durée d'exécution\n", "Voici une façon de mesurer la durée d'exécution des programmes." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### time\n", "\n", "time() fournit le nombre de secondes écoulées deuis le 1er janvier 1970\n", "\n", "Le 1er janvier 2021, la durée était de 51 ans, soit environ 51×365.25×86400 =1 609 437 600\n", "\n", "secondes.\n", "\n", "Aujourd'hui, le 27 janvier 2021; time() donne environ 1 611 767 583 : ça semble corrrect." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1611767583.2637951" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import time\n", "time.time()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Temps d'execution : 4.673004150390625e-05 secondes\n" ] } ], "source": [ "import time\n", "\n", "instant_debut = time.time()\n", "\n", "# le programme\n", "\n", "duree = time.time() - instant_debut\n", "print(\"Temps d'execution : \", duree, \"secondes\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Un exemple : puissance $n$ d'un nombre" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1024" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def puissance_n(x,n):\n", " # retourne x à la puissance n\n", " p = 1\n", " for i in range(n):\n", " p = x*p\n", " return p\n", "\n", "\n", "puissance_n(2,10)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Temps d'execution : 4.013584852218628 secondes\n" ] } ], "source": [ "import time\n", "\n", "instant_debut = time.time()\n", "\n", "puissance_n(10,200000)\n", "\n", "duree1 = time.time() - instant_debut\n", "print(\"Temps d'execution : \", duree1, \"secondes\")" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1024" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def puissance_rapide(x,n):\n", " # retourne x à la puissance n mais plus vite\n", " if n == 1:\n", " return x\n", " else:\n", " if n%2 ==0:\n", " p = puissance_rapide(x,n/2)\n", " return p*p\n", " else:\n", " p = puissance_rapide(x,(n-1)/2)\n", " return p*p*x\n", "\n", "puissance_rapide(2,10)\n" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Temps d'execution : 0.030864477157592773 secondes\n" ] } ], "source": [ "import time\n", "\n", "instant_debut = time.time()\n", "\n", "puissance_rapide(10,200000)\n", "\n", "duree2 = time.time() - instant_debut\n", "print(\"Temps d'execution : \", duree2, \"secondes\")" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "130.03897107102856" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "duree1/duree2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Deuxième exemple : évaluation d'un polynôme\n", "\n", "$P(x)= 9x^5 + 8x^4 + 7x^3 + 6x^2 + 5x + 4$\n", "\n", "pol1 : évaluation bête\n", "\n", "pol 2 : évaluation par $P(x) = 4+x(5+x(6+x(7+x(8+9x))))$" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(2863390254, 2863390254)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import time\n", "\n", "def pol1(x):\n", " return 9*x**5 + 8*x**4 + 7*x**3 + 6*x**2 + 5*x + 4\n", "\n", "def pol2(x):\n", " return 4+x*(5+x*(6+x*(7+x*(8+9*x))))\n", "\n", "pol1(50),pol2(50)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Temps d'execution pour pol1 : 0.20649123191833496 secondes\n", "Temps d'execution pour pol2 : 0.06705093383789062 secondes\n" ] }, { "data": { "text/plain": [ "3.0796175399670025" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "n = 10**5\n", "\n", "instant_debut = time.time()\n", "for i in range(n):\n", " pol1(i)\n", "duree_pol1 = time.time() - instant_debut\n", "print(\"Temps d'execution pour pol1 : \", duree_pol1, \"secondes\")\n", "\n", "instant_debut = time.time()\n", "for i in range(n):\n", " pol2(i)\n", "duree_pol2 = time.time() - instant_debut\n", "print(\"Temps d'execution pour pol2 : \", duree_pol2, \"secondes\")\n", "\n", "duree_pol1/duree_pol2\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## durée en $n^2$" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1000000" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import time \n", "\n", "def quadratique(n):\n", " s = 0\n", " for i in range(n):\n", " for j in range(n):\n", " s = s + 1\n", " return s\n", "\n", "quadratique(10**3)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.0005550384521484375, 0.0021865367889404297, 0.005524158477783203, 0.01150822639465332, 0.018529653549194336]\n" ] } ], "source": [ "p = 5\n", "y1 = []\n", "\n", "n = [100 + 100*i for i in range(p)]\n", "\n", "for i in n:\n", " instant_debut = time.time()\n", " quadratique(i)\n", " duree = time.time() - instant_debut\n", " y1 = y1 + [duree]\n", " \n", "print(y1)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEICAYAAAC0+DhzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAc6UlEQVR4nO3dfZBV9Z3n8ffHBtw2cat16bGkkaF1EMUnwBvxIVqaqDxsEpCsEXdmdE1WQpWkdmtqSSQpE9eqrI4kMzsmDkgmLDqbSExhSJt1giZGrdqElW4aBUw6NMhoNwSJCJmRVmj47h/3NLncc2/3uU13Xx4+r6pbfc/v4dzvOTR8OA/3XkUEZmZmhU6pdgFmZnbscTiYmVmKw8HMzFIcDmZmluJwMDOzFIeDmZmlOBzMBoikTZKur3YdZgNhWLULMDteSPrXgsXTgA+Ag8ny5yPiooKx9wN/FhF/MXQVmg0ch4NZRhHx4Z7nkrYB/zkiftafdUkSoIg4NEDlmQ0on1YyGyCStkm6UdI04MvAbZL+VdKrSf+Lkr4u6f8C+4BzJV0g6XlJuyW1SfpMNbfBrIePHMwGWET8VNL/oPRppb8EpgNtwIeAjcBXk7ZLgeckbYqITUNZs1kxHzmYDa3lEbEpIrqBacC2iPhfEdEdEeuAlcB/qG6JZj5yMBtqbxU8/1NgiqQ9BW3DgH8c2pLM0hwOZoOj3McdF7a/BbwUETcNQT1mFfFpJbPBsRMYK6m3v2M/Ac6X9JeShiePj0i6cIhqNCvL4WA2OH6Y/HxH0rpSAyLiX4CbgTnAduB3wF8Dpw5JhWa9kL/sx8zMivnIwczMUhwOZmaW4nAwM7MUh4OZmaWcEO9zGDlyZIwdO7baZZiZHVdaWlp+HxH1pfpOiHAYO3Yszc3N1S7DzOy4Iumfy/X5tJKZmaU4HMzMLMXhYGZmKSfENYdS9u/fz5YtW9i3b1+1SzmhnHbaaZx33nmMGDGi2qWY2SA6YcNhy5Yt1NXVMX78eE45xQdIA+HQoUPs3LmT9vZ2LrzwQvLfdGlmJ6IT9l/Nffv2cdZZZzkYBtApp5zCWWedxb59+3jxxRc5dMhff2xWLataO7nmoRdovPf/cM1DL7CqtXNA139C/8vpYBh4p5xyCpJYt24dmzdvrnY5ZielVa2dLHx6A517ugigc08XC5/eMKAB4X89raTHHnuMd999t2z/8OHDe+03s8GzaHUbXQcOHtHWdeAgi1a3DdhrOBws5YEHHuDMM8/kjDPOKDtGEv64d7Pq2L6nq6L2/jhhL0hXalVrJ4tWt7F9Txej6mpZMHU8syY1VLusQdPd3c2wYcNKLn/1q1+tVllmlsGoulo6SwTBqLraAXsNHzkwOOfvtm3bxoUXXsjdd9/NRRddxM0330xXV/oP85lnnmHKlClMmjSJG2+8kZ07dwJw//33841vfOPwuIsvvpht27al5v/0pz9l8uTJXHbZZXz84x8H4JVXXuHqq69m0qRJXH311bS15Q81ly9fzq233sonP/lJbr755tTye++9x2c/+1k+8pGPMGnSJH784x/3e/vNbPAsmDqe2uE1R7TVDq9hwdTxA/YaDgcG7/zd5s2bueeee9i0aRN1dXWsXLkyNeajH/0oa9asobW1lTlz5vDwww9nXv+uXbu4++67WblyJa+++io//GH+mykvuOACXn75ZVpbW3nggQf48pe/fHjOr371Kx5//HFeeOGF1PLXv/51Pvaxj7F27Vp+8YtfsGDBAt57772j2gdmNvBmTWrgwdmX0FBXi4CGuloenH3JgJ7t8GklBu/8XWNjIxMnTgTg8ssvL/k//46ODm677TZ27NjB/v37aWxszLz+NWvWcN111x2ec+aZZwKwd+9e7rzzTjZv3owkDhw4cHjOTTfddHhc8fJzzz1HU1PT4SOW999/nzfffJMLL/T33Zsda2ZNahjUU98+cqD8ebqjPX936ql//J74mpoauru7U2O+8IUvMH/+fDZs2MBjjz3G+++/D8CwYcOOeB9BT3uhiCj5RrT77ruPG264gY0bN/LMM88cMfdDH/rQEWMLlyOClStXsn79etavX+9gMDuJORwYmvN35ezdu5eGhnz6P/7444fbx44dy7p16wBYt24db7zxRmruVVddxUsvvXS4b/fu3al1Ll++PHMtU6dO5Vvf+tbhu5BaW1sr3yAzOyE4HBia83fl3H///dx6661ce+21jBw58nD7pz/9aXbv3s3EiRNZvHgx559/fmpufX09S5cuZfbs2Vx22WXcdtttAHzxi19k4cKFXHPNNRw8eDA1r5z77ruPAwcOcOmll3LxxRdz3333Hf0GmtlxSVnuVZc0Dfg7oAb4h4h4qKhfSf8MYB/wnyJiXdK3DPgE8HZEXFww5wdAz3/N64A9ETFR0ljg10DP1eA1ETGvt/pyuVwUf9lPS0sLl19+eZ/bZpVraWnhl7/8Jblcjquuuqra5ZhZP0lqiYhcqb4+L0hLqgEeBW4COoC1kpoi4vWCYdOBccljCrA4+QmwHPg28ETheiPitoLX+Cawt6B7S0RM7Ks2MzMbHFlOK10BtEfE1ojYD6wAZhaNmQk8EXlrgDpJZwNExMvA7nIrT446PgM82Z8NMDOzgZclHBqAtwqWO5K2SseUcy2wMyIKP8WtUVKrpJckXZtxPSn+1NCB531qdnLIEg6lPrS/+EJFljHl3M6RRw07gDERMQn4K+D7kv5tqihprqRmSc27du1KrfS0005j586d/sdsAB06dIjf/e53R7xvwsxOTFneBNcBnFOwPBrY3o8xKZKGAbOBw1eOI+ID4IPkeYukLcD5wBFXnCNiKbAU8heki9d93nnnsXnzZjo7O/2lNAPowIEDvPnmmxw6dIiampq+J5jZcSlLOKwFxklqBDqBOcB/LBrTBMyXtIL8hei9EbEjw7pvBH4TER09DZLqgd0RcVDSueQvcm/NsK4jjBgxggsuuIDvf//7vPvuu5x++umVrsLK6O7uJiIOv5fCzE48fYZDRHRLmg+sJn8r67KI2CRpXtK/BHiW/G2s7eRvZb2rZ76kJ4HrgZGSOoCvRcR3k+45pC9EXwc8IKkbOAjMi4iyF7R7U1NTwy233MKLL77IO++844+YHiCnn346N9xwg8PB7ASW6X0Ox7pS73MwM7Pe9fY+B79D2szMUhwOZmaW4nAwM7MUh4OZmaU4HMzMLMXhYGZmKQ4HMzNLcTiYmVmKw8HMzFIcDmZmluJwMDOzFIeDmZmlOBzMzCzF4WBmZikOBzMzS3E4mJlZisPBzMxSHA5mZpbicDAzs5RM4SBpmqQ2Se2S7i3RL0mPJP2vSZpc0LdM0tuSNhbNuV9Sp6T1yWNGQd/CZF1tkqYezQaamVnl+gwHSTXAo8B0YAJwu6QJRcOmA+OSx1xgcUHfcmBamdX/bURMTB7PJq83AZgDXJTM+/ukBjMzGyJZjhyuANojYmtE7AdWADOLxswEnoi8NUCdpLMBIuJlYHcFNc0EVkTEBxHxBtCe1GBmZkMkSzg0AG8VLHckbZWOKWV+chpqmaQzKlmXpLmSmiU179q1K8NLmZlZVlnCQSXaoh9jii0GzgMmAjuAb1ayrohYGhG5iMjV19f38VJmZlaJLOHQAZxTsDwa2N6PMUeIiJ0RcTAiDgHf4Y+njipel5mZDaws4bAWGCepUdII8heLm4rGNAF3JHctXQnsjYgdva2055pE4hag526mJmCOpFMlNZK/yP1KhjrNzGyADOtrQER0S5oPrAZqgGURsUnSvKR/CfAsMIP8xeN9wF098yU9CVwPjJTUAXwtIr4LPCxpIvlTRtuAzyfr2yTpKeB1oBu4JyIODszmmplZForo69LAsS+Xy0Vzc3O1yzAzO65IaomIXKk+v0PazMxSHA5mZpbicDAzsxSHg5mZpTgczMwsxeFgZmYpDgczM0txOJiZWYrDwczMUhwOZmaW4nAwM7MUh4OZmaU4HMzMLMXhYGZmKQ4HMzNLcTiYmVmKw8HMzFIcDmZmlpIpHCRNk9QmqV3SvSX6JemRpP81SZML+pZJelvSxqI5iyT9Jhn/I0l1SftYSV2S1iePJUe7kWZmVpk+w0FSDfAoMB2YANwuaULRsOnAuOQxF1hc0LccmFZi1c8DF0fEpcBvgYUFfVsiYmLymJdxW8zMbIBkOXK4AmiPiK0RsR9YAcwsGjMTeCLy1gB1ks4GiIiXgd3FK42I5yKiO1lcA4zu70aYmdnAyhIODcBbBcsdSVulY3rzWeCfCpYbJbVKeknStRWsx8zMBsCwDGNUoi36Mab0yqWvAN3A95KmHcCYiHhH0uXAKkkXRcQfiubNJX8KizFjxmR5KTMzyyjLkUMHcE7B8mhgez/GpEi6E/gE8OcREQAR8UFEvJM8bwG2AOcXz42IpRGRi4hcfX19hs0wM7OssoTDWmCcpEZJI4A5QFPRmCbgjuSupSuBvRGxo7eVSpoGfAn4VETsK2ivTy6CI+lc8he5t2beIjMzO2p9nlaKiG5J84HVQA2wLCI2SZqX9C8BngVmAO3APuCunvmSngSuB0ZK6gC+FhHfBb4NnAo8LwlgTXJn0nXAA5K6gYPAvIhIXdA2M7PBo+RsznEtl8tFc3NztcswMzuuSGqJiFypPr9D2szMUhwOZmaWkuVWVjOzQbeqtZNFq9vYvqeLUXW1LJg6nlmTKnm7lA0kh4OZVd2q1k4WPr2BrgMHAejc08XCpzcAOCCqxKeVzKzqFq1uOxwMPboOHGTR6rYqVWQOBzOruu17uipqt8HncDCzqhtVV1tRuw0+h4OZVd2CqeOpHV5zRFvt8BoWTB1fpYrMF6TNrOp6Ljr7bqVjh8PBzI4JsyY1OAyOIT6tZGZmKQ4HMzNLcTiYmVmKw8HMzFIcDmZmluJwMDOzFIeDmZmlOBzMzCzF4WBmZimZwkHSNEltktol3VuiX5IeSfpfkzS5oG+ZpLclbSyac6ak5yVtTn6eUdC3MFlXm6SpR7OBZmZWuT7DQVIN8CgwHZgA3C5pQtGw6cC45DEXWFzQtxyYVmLV9wI/j4hxwM+TZZJ1zwEuSub9fVKDmZkNkSxHDlcA7RGxNSL2AyuAmUVjZgJPRN4aoE7S2QAR8TKwu8R6ZwKPJ88fB2YVtK+IiA8i4g2gPanBzMyGSJZwaADeKljuSNoqHVPsrIjYAZD8/JNK1iVprqRmSc27du3qcyPMzCy7LOGgEm3RjzFZZVpXRCyNiFxE5Orr6/v5UmZmVkqWcOgAzilYHg1s78eYYjt7Tj0lP98+inWZmdkAyhIOa4FxkholjSB/sbipaEwTcEdy19KVwN6eU0a9aALuTJ7fCfy4oH2OpFMlNZK/yP1KhjrNzGyA9PllPxHRLWk+sBqoAZZFxCZJ85L+JcCzwAzyF4/3AXf1zJf0JHA9MFJSB/C1iPgu8BDwlKTPAW8Ctybr2yTpKeB1oBu4JyIODtD2mplZBoro76WBY0cul4vm5uZql2FmdlyR1BIRuVJ9foe0mZmlOBzMzCzF4WBmZikOBzMzS3E4mJlZisPBzMxSHA5mZpbicDAzsxSHg5mZpTgczMwsxeFgZmYpDgczM0txOJiZWYrDwczMUhwOZmaW4nAwM7MUh4OZmaU4HMzMLCVTOEiaJqlNUruke0v0S9IjSf9rkib3NVfSDyStTx7bJK1P2sdK6iroWzIQG2pmZtkN62uApBrgUeAmoANYK6kpIl4vGDYdGJc8pgCLgSm9zY2I2wpe45vA3oL1bYmIiUe3aWZm1l9ZjhyuANojYmtE7AdWADOLxswEnoi8NUCdpLOzzJUk4DPAk0e5LWZmNkCyhEMD8FbBckfSlmVMlrnXAjsjYnNBW6OkVkkvSbo2Q41mZjaA+jytBKhEW2Qck2Xu7Rx51LADGBMR70i6HFgl6aKI+MMRLyjNBeYCjBkzppfyzcysUlmOHDqAcwqWRwPbM47pda6kYcBs4Ac9bRHxQUS8kzxvAbYA5xcXFRFLIyIXEbn6+voMm2FmZlllCYe1wDhJjZJGAHOApqIxTcAdyV1LVwJ7I2JHhrk3Ar+JiI6eBkn1yYVsJJ1L/iL31n5un5mZ9UOfp5UiolvSfGA1UAMsi4hNkuYl/UuAZ4EZQDuwD7irt7kFq59D+kL0dcADkrqBg8C8iNh9FNtoZmYVUkTxJYDjTy6Xi+bm5mqXYWZ2XJHUEhG5Un1+h7SZmaU4HMzMLMXhYGZmKQ4HMzNLcTiYmVmKw8HMzFIcDmZmluJwMDOzFIeDmZmlOBzMzCzF4WBmZikOBzMzS3E4mJlZSpZvgjOzfljV2smi1W1s39PFqLpaFkwdz6xJxd+Sa3ZscjiYDYJVrZ0sfHoDXQcOAtC5p4uFT28AcEDYccGnlcwGwaLVbYeDoUfXgYMsWt1WpYrMKuNwMBsE2/d0VdRudqxxOJgNglF1tRW1mx1rHA5mg2DB1PHUDq85oq12eA0Lpo6vUkVmlckUDpKmSWqT1C7p3hL9kvRI0v+apMl9zZV0v6ROSeuTx4yCvoXJ+DZJU492I82G2qxJDTw4+xIa6moR0FBXy4OzL/HFaDtu9Hm3kqQa4FHgJqADWCupKSJeLxg2HRiXPKYAi4EpGeb+bUR8o+j1JgBzgIuAUcDPJJ0fEUde3TM7xs2a1OAwsONWliOHK4D2iNgaEfuBFcDMojEzgScibw1QJ+nsjHOLzQRWRMQHEfEG0J6sx8zMhkiWcGgA3ipY7kjasozpa+785DTUMklnVPB6SJorqVlS865duzJshpmZZZUlHFSiLTKO6W3uYuA8YCKwA/hmBa9HRCyNiFxE5Orr60vVbWZm/ZTlHdIdwDkFy6OB7RnHjCg3NyJ29jRK+g7wkwpez8zMBlGWI4e1wDhJjZJGkL9Y3FQ0pgm4I7lr6Upgb0Ts6G1uck2ixy3AxoJ1zZF0qqRG8he5X+nn9pmZWT/0eeQQEd2S5gOrgRpgWURskjQv6V8CPAvMIH/xeB9wV29zk1U/LGki+VNG24DPJ3M2SXoKeB3oBu7xnUpmZkNLEanT+cedXC4Xzc3N1S7DzOy4IqklInKl+vwOaTMzS3E4mJlZisPBzMxSHA5mZpbicDAzsxSHg5mZpTgczMwsxeFgZmYpDgczM0txOJiZWYrDwczMUhwOZmaW4nAwM7MUh4OZmaU4HMzMLMXhYGZmKQ4HMzNLcTiYmVlKpnCQNE1Sm6R2SfeW6JekR5L+1yRN7muupEWSfpOM/5GkuqR9rKQuSeuTx5KB2FAzM8uuz3CQVAM8CkwHJgC3S5pQNGw6MC55zAUWZ5j7PHBxRFwK/BZYWLC+LRExMXnM6+/GmZlZ/2Q5crgCaI+IrRGxH1gBzCwaMxN4IvLWAHWSzu5tbkQ8FxHdyfw1wOgB2B4zMxsAWcKhAXirYLkjacsyJstcgM8C/1Sw3CipVdJLkq7NUKOZmQ2gYRnGqERbZBzT51xJXwG6ge8lTTuAMRHxjqTLgVWSLoqIPxTNm0v+FBZjxozpcyPs6K1q7WTR6ja27+liVF0tC6aOZ9akUllvZse7LEcOHcA5Bcujge0Zx/Q6V9KdwCeAP4+IAIiIDyLineR5C7AFOL+4qIhYGhG5iMjV19dn2Aw7GqtaO1n49AY693QRQOeeLhY+vYFVrZ3VLs3MBkGWcFgLjJPUKGkEMAdoKhrTBNyR3LV0JbA3Inb0NlfSNOBLwKciYl/PiiTVJxeykXQu+YvcW49qK+2oLVrdRteBg0e0dR04yKLVbVWqyMwGU5+nlSKiW9J8YDVQAyyLiE2S5iX9S4BngRlAO7APuKu3ucmqvw2cCjwvCWBNcmfSdcADkrqBg8C8iNg9UBts/bN9T1dF7WZ2fMtyzYGIeJZ8ABS2LSl4HsA9Wecm7X9WZvxKYGWWumzojKqrpbNEEIyqq61CNWY22PwOactkwdTx1A6vOaKtdngNC6aOr1JFZjaYMh05mPXcleS7lcxODg4Hy2zWpAaHgdlJwqeVzMwsxeFgZmYpDgczM0txOJiZWYrDwczMUhwOZmaW4nAwM7MUh4OZmaU4HMzMLMXhYGZmKSf1x2f4m83MzEo7acOh55vNer7ApuebzQAHhJmd9E7a00r+ZjMzs/JO2nDwN5uZmZV30oZDuW8w8zebmZmdxOHgbzYzMysvUzhImiapTVK7pHtL9EvSI0n/a5Im9zVX0pmSnpe0Ofl5RkHfwmR8m6SpR7uRpcya1MCDsy+hoa4WAQ11tTw4+xJfjDYzAxQRvQ+QaoDfAjcBHcBa4PaIeL1gzAzgC8AMYArwdxExpbe5kh4GdkfEQ0lonBERX5I0AXgSuAIYBfwMOD8ijrx6XCCXy0Vzc3P/9oCZ2UlKUktE5Er1ZTlyuAJoj4itEbEfWAHMLBozE3gi8tYAdZLO7mPuTODx5PnjwKyC9hUR8UFEvAG0J+sxM7MhkiUcGoC3CpY7krYsY3qbe1ZE7ABIfv5JBa+HpLmSmiU179q1K8NmmJlZVlnCQSXais9FlRuTZW5/Xo+IWBoRuYjI1dfX97FKMzOrRJZw6ADOKVgeDWzPOKa3uTuTU08kP9+u4PXMzGwQZQmHtcA4SY2SRgBzgKaiMU3AHcldS1cCe5NTRb3NbQLuTJ7fCfy4oH2OpFMlNQLjgFf6uX1mZtYPfX62UkR0S5oPrAZqgGURsUnSvKR/CfAs+TuV2oF9wF29zU1W/RDwlKTPAW8CtyZzNkl6Cngd6Abu6e1OJYCWlpbfS/rnyjb9CCOB3x/F/MHiuirjuirjuipzItb1p+U6+ryV9WQgqbnc7VzV5Loq47oq47oqc7LVddK+Q9rMzMpzOJiZWYrDIW9ptQsow3VVxnVVxnVV5qSqy9cczMwsxUcOZmaW4nAwM7OUEz4cJC2T9LakjQVtVf248F7qul9Sp6T1yWNGFeo6R9IvJP1a0iZJ/yVpr+o+66Wuqu4zSf9G0iuSXk3q+u9Je7X3V7m6qv47lrxWjaRWST9Jlqv+d7JMXVXfX5K2SdqQvH5z0jb4+ysiTugHcB0wGdhY0PYwcG/y/F7gr5PnE4BXgVOBRmALUDOEdd0P/LcSY4eyrrOBycnz08l/5PqEau+zXuqq6j4j/1lgH06eDwf+H3DlMbC/ytVV9d+x5PX+Cvg+8JNkuep/J8vUVfX9BWwDRha1Dfr+OuGPHCLiZWB3UXPVPy68TF3lDGVdOyJiXfL8X4Bfk/9U3Krus17qKmeo6oqI+NdkcXjyCKq/v8rVVc6Q/Y5JGg38e+Afil6/qn8ny9RVTrW/WmDQ99cJHw5lHNXHhQ+y+cp/m96ygkPFqtQlaSwwifz/Oo+ZfVZUF1R5nyWnItaT//DI5yPimNhfZeqC6v+O/U/gi8Chgraq768ydUH191cAz0lqkTQ3aRv0/XWyhkM5/fmI8YG0GDgPmAjsAL6ZtA95XZI+DKwE/mtE/KG3oSXaBq22EnVVfZ9FxMGImEj+E4SvkHRxL8OrXVdV95ekTwBvR0RL1ikl2oayrqr/fgHXRMRkYDpwj6Trehk7YHWdrOFwTH5ceETsTP5CHwK+wx8PB4e0LknDyf8D/L2IeDpprvo+K1XXsbLPklr2AC8C0zgG9lepuo6B/XUN8ClJ28h/M+THJP1vqr+/StZ1DOwvImJ78vNt4EdJDYO+v07WcDgmPy685w87cQvQcyfTkNUlScB3gV9HxN8UdFV1n5Wrq9r7TFK9pLrkeS1wI/Abqr+/StZV7f0VEQsjYnREjCX/Ef4vRMRfUOX9Va6uau8vSR+SdHrPc+DmpIbB31+DcXX9WHoAT5I/HDxAPlU/B/w74OfA5uTnmQXjv0L+Cn8bMH2I6/pHYAPwWvKHfHYV6voo+cPQ14D1yWNGtfdZL3VVdZ8BlwKtyetvBL6atFd7f5Wrq+q/YwWvdz1/vCuo6n8ny9RV7d+vc8nfffQqsAn4ylDtL398hpmZpZysp5XMzKwXDgczM0txOJiZWYrDwczMUhwOZmaW4nAwM7MUh4OZmaX8f895FT+PPPFKAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "\n", "fig, ax = plt.subplots()\n", "ax.set_title('Titre')\n", "line1, = ax.plot(n, y1,'o', lw=2, label='n au carré')\n", "#plt.xscale('log')\n", "leg = ax.legend(fancybox=True, shadow=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## durée en $n^3$" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "10000" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def cubique(n):\n", " s = 0\n", " for i in range(n):\n", " for j in range(n):\n", " for k in range(n):\n", " s = s + 1\n", " return s\n", "\n", "quadratique(10**2)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.06116533279418945, 0.43543267250061035, 1.6009180545806885, 4.279731512069702, 9.18059492111206]\n" ] } ], "source": [ "p = 5\n", "y2 = []\n", "\n", "n = [100 + 100*i for i in range(p)]\n", "\n", "for i in n:\n", " instant_debut = time.time()\n", " cubique(i)\n", " duree = time.time() - instant_debut\n", " y2 = y2 + [duree]\n", " \n", "print(y2)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEICAYAAAB25L6yAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAASs0lEQVR4nO3df3DUdX7H8debJXjBXzklZSA6F6Q15ccBgfQ8C6Ljr6DnKOOPQjs4trbQcTzqnS2n1Jk7+kd7d+J1rDPVGWrvSu+szgiUqfbGaOthaRXbhMiPHE0FjUgIkCsTT0qQkLz7x34TkrCb7Mp+9/tJ8nzMZLL7yXf3+8pnNq9889lvds3dBQAI17ikAwAAhkZRA0DgKGoACBxFDQCBo6gBIHAUNQAEjqLGqGRmTWZ2Q9I5gEIYn3QA4PMwsxP9rk6U9Jmk7uj6H7r7rH7brpP0q+6+ongJgcKhqDEiuftFvZfNrEXSH7j7v3ye+zIzk2Tu3lOgeEBBsfSBUcnMWszsZjNbIulPJS0zsxNmtiv6+jYz+3Mz+w9JJyVdZWa/bmZvmNlxM2s2s99K8nsAenFEjVHN3V8zs79Q5qWP+yXdJqlZ0oWS9kr6djQ2R9LrZtbk7k3FzAwMxhE1xrK/c/cmdz8jaYmkFnf/kbufcfedkjZLujfZiABH1BjbPu53+UuSrjGzjn5j4yX9uLiRgHNR1BgLsr1EZP/xjyW95e63FCEPkBeWPjAWHJVUaWZDPd5flXS1md1vZiXRx2+Y2YwiZQSyoqgxFrwcff5fM9uZaQN3/1TSrZKWSzos6Yik70u6oCgJgSEYbxwAAGHjiBoAAkdRA0DgKGoACBxFDQCBi+U86kmTJnllZWUcdw0Ao1JDQ8Mv3L0809diKerKykrV19fHcdcAMCqZ2UfZvsbSBwAEjqIGgMBR1AAQuKK9KNPp06d14MABnTx5sli7HNUmTpyo6dOna8KECUlHARCzohX1gQMHVFZWpqqqKo0bx4H8+ejp6dHRo0e1f/9+zZw5M+k4AGJWtMY8efKkJk+eTEkXwLhx4zR58mSdPHlS9fX14vVagGRtbWzVwu+9qWmP/7MWfu9NbW1sLej9F7U1KenCGTdunMxM27dvV2trYR8UAHK3tbFVa7fsUWtHp1xSa0en1m7ZU9CypjlHuHHjxunEiRNJxwDGrPV1zers6h4w1tnVrfV1zQXbB0WdoJaWFs2ePfu87sPdWfoAEnS4ozOv8c8j2Lfi2trYqvV1zTrc0ampZaVaU1ulpdUVSccCgAGmlpWqNUMpTy0rLdg+gjyijmPNp6WlRTNmzNDKlSs1a9Ys3XrrrersPHdyX3nlFV1zzTWqrq7WzTffrKNHj0qS1q1bp6eeeqpvu9mzZ6ulpeWc27/22muaP3++5s6dq5tuumnY2545c0YPPPCA5syZo3vvvbfv9MWGhgZdf/31WrBggWpra9XW1va5v3cA8VlTW6XSktSAsdKSlNbUVhVsH0EWdVxrPu+//74efvhhNTU1qaysTJs3bz5nm0WLFmnHjh1qbGzU8uXL9eSTT+Z8/+3t7Vq5cqU2b96sXbt26eWXXx72Ns3NzVq1apV2796tSy65RM8++6y6urq0evVqbdq0SQ0NDXrwwQf1xBNP5PW9AiiOpdUV+u7dX1ZFWalMUkVZqb5795cLugIQ5NJHXGs+06ZN07x58yRJCxYsyHhEfOjQIS1btkxtbW06ffq0pk2blvP979ixQ4sXL+67zWWXXTbsba688kotXLhQkrRixQo988wzWrJkifbu3atbbkm/IXZ3d7emTJmScw4AxbW0uiLWpdkgizquNZ8LLjj7PqWpVCrj0sfq1av16KOP6s4779S2bdu0bt06SdL48ePV09PTt92pU6fOua27y8zOGR/qtoO3NzO5u2bNmqV33nkn928OwKgV5NJHMdZ8svnkk09UUZH+zbhx48a+8crKSu3cmX4D6507d+rDDz8857bXXnut3nrrrb6vHT9+fNjbHjx4sK+QX3zxRS1atEhVVVVqb2/vG+/q6lJTU1Ohv1UAI0SQRV2MNZ9s1q1bp/vuu0/XXXedJk2a1Dd+zz336Pjx45o3b56ee+45XX311efctry8XBs2bNDdd9+tuXPnatmyZcPedsaMGdq4caPmzJmj48eP66GHHtKECRO0adMmPfbYY5o7d67mzZunt99+O/bvHUCYLI5zcGtqanzwGwc0NDRowYIFBd/XWNbQ0KDt27ertrZWM2bMSDoOgPNgZg3uXpPpa0EeUQMAzqKoASBwRS3q/mc+4Pwwl8DYUbSinjhxotra2iiYAujp6dGRI0fU1dWVdBQARVC086inT5+uhoYGHTlypFi7HNW6urp08OBBmRkvHwuMckUr6gkTJujUqVPasWOHLr300oz/GIL8fPbZZ0qlUiovL086CoAYFfU/ExcvXqxUKqWPPvpI3d3dw98AQ7r88su1cOHCnP5VHcDIVdSiTqVSWrx4cTF3CQAjHoubABA4ihoAAkdRA0DgKGoACBxFDQCBo6gBIHA5FbWZfdPMmsxsr5m9aGZfiDsYACBt2KI2swpJfySpxt1nS0pJWh53MABAWq5LH+MllZrZeEkTJR2OLxIAoL9hi9rdWyU9JemgpDZJn7j764O3M7NVZlZvZvXt7e2FTwoAY1QuSx9flHSXpGmSpkq60MxWDN7O3Te4e4271/AiQQBQOLksfdws6UN3b3f3LklbJP1mvLEAAL1yKeqDkr5qZhMt/dqkN0naF28sAECvXNao35W0SdJOSXui22yIORcAIJLTy5y6+3ckfSfmLACADPjPRAAIHEUNAIGjqAEgcBQ1AASOogaAwFHUABA4ihoAAkdRA0DgKGoACBxFDQCBo6gBIHAUNQAEjqIGgMBR1AAQOIoaAAJHUQNA4ChqAAgcRQ0AgaOoASBwFDUABI6iBoDAUdQAEDiKGgACR1EDQOAoagAIHEUNAIGjqAEgcBQ1AASOogaAwFHUABA4ihoAAkdRA0DgKGoACBxFDQCBy6mozazMzDaZ2X+b2T4zuzbuYACAtPE5bvdXkl5z93vNbIKkiTFmAgD0M2xRm9klkhZL+l1JcvfTkk7HGwsA0CuXpY+rJLVL+pGZNZrZ82Z24eCNzGyVmdWbWX17e3vBgwLAWJVLUY+XNF/Sc+5eLen/JD0+eCN33+DuNe5eU15eXuCYADB25VLUhyQdcvd3o+ublC5uAEARDFvU7n5E0sdmVhUN3STp57GmAgD0yfWsj9WSXojO+PhA0u/FFwkA0F9ORe3u70mqiTkLACAD/jMRAAJHUQNA4ChqAAgcRQ0AgaOoASBwFDUABI6iBoDAUdQAEDiKGgACR1EDQOAoagAIHEUNAIGjqAEgcBQ1AASOogaAwFHUABA4ihoAAkdRA0DgKGoACBxFDQCBo6gBIHAUNQAEjqIGgMBR1AAQOIoaAAJHUQNA4ChqAAgcRQ0AgRufdAAA4dna2Kr1dc063NGpqWWlWlNbpaXVFUnHGrMoagADbG1s1dote9TZ1S1Jau3o1NoteySJsk4ISx8ABlhf19xX0r06u7q1vq45oUSgqAEMcLijM69xxI+iBjDA1LLSvMYRP4oawABraqtUWpIaMFZaktKa2qqEEiHnJxPNLCWpXlKru98RXyQASep9wpCzPsKRz1kfj0jaJ+mSmLIACMTS6gqKOSA5LX2Y2RWSvibp+XjjAAAGy3WN+mlJ35LUE2MWAEAGwxa1md0h6Zi7Nwyz3Sozqzez+vb29oIFBICxLpcj6oWS7jSzFkkvSbrRzH4yeCN33+DuNe5eU15eXuCYADB2DVvU7r7W3a9w90pJyyW96e4rYk8GAJDEedQAELy8XpTJ3bdJ2hZLEgBARhxRA0DgKGoACBxFDQCBo6gBIHAUNQAEjqIGgMBR1AAQOIoaAAJHUQNA4ChqAAgcRQ0AgaOoASBwFDUABI6iBoDAUdQAEDiKGgACR1EDQOAoagAIHEUNAIGjqAEgcBQ1AASOogaAwFHUABA4ihoAAkdRA0DgKGoACBxFDQCBo6gBIHAUNQAEjqIGgMBR1AAQOIoaAAJHUQNA4ChqAAgcRQ0AgRu2qM3sSjP7mZntM7MmM3ukGMEAAGnjc9jmjKQ/dvedZnaxpAYze8Pdfx5zNgCAcjiidvc2d98ZXf5U0j5JFXEHAwCk5bVGbWaVkqolvZvha6vMrN7M6tvb2wuTDgCQe1Gb2UWSNkv6hrv/cvDX3X2Du9e4e015eXkhMwLAmJZTUZtZidIl/YK7b4k3EgCgv1zO+jBJfytpn7v/ZfyRAAD95XJEvVDS/ZJuNLP3oo/bY84FAIgMe3qeu/+7JCtCFgBABrmcRw2MeFsbW7W+rlmHOzo1taxUa2qrtLSas0wxMlDUGPW2NrZq7ZY96uzqliS1dnRq7ZY9kkRZY0TgtT4w6q2va+4r6V6dXd1aX9ecUCIgPxQ1Rr3DHZ15jQOhoagx6k0tK81rHAgNRY1Rb01tlUpLUgPGSktSWlNblVAiID88mYhRr/cJQ876wEhFUWNMWFpdQTFjxGLpAwACR1EDQOAoagAIHEUNAIGjqAEgcBQ1AASOogaAwFHUABA4ihoAAkdRA0DgKGoACBxFDQCBo6gBIHAUNQAEjqIGgMBR1AAQOIoaAALHO7yMUFsbW3lrKWCMoKhHoK2NrVq7ZY86u7olSa0dnVq7ZY8kUdbAKMTSxwi0vq65r6R7dXZ1a31dc0KJAMSJoh6BDnd05jUOYGSjqEegqWWleY0DGNko6hFoTW2VSktSA8ZKS1JaU1uVUCIAceLJxBGo9wlDzvoAxgaKeoRaWl1BMQNjRDBFzXnBAJBZTmvUZrbEzJrNbL+ZPV7oEL3nBbd2dMp19rzgrY2thd4VAIw4wxa1maUk/bWk2yTNlPTbZjazkCE4LxgAssvliPorkva7+wfuflrSS5LuKmQIzgsGgOxyKeoKSR/3u34oGhvAzFaZWb2Z1be3t+cVgvOCASC7XIraMoz5OQPuG9y9xt1rysvL8wrBecEAkF0uZ30cknRlv+tXSDpcyBCcFwwA2eVS1P8l6dfMbJqkVknLJf1OoYNwXjAAZDZsUbv7GTP7uqQ6SSlJP3T3ptiTAQAk5fgPL+7+U0k/jTkLACADXpQJAAJHUQNA4ChqAAicuZ9zSvT536lZu6SPPufNJ0n6RQHjFAq58kOu/JArP6Mx15fcPeM/ocRS1OfDzOrdvSbpHIORKz/kyg+58jPWcrH0AQCBo6gBIHAhFvWGpANkQa78kCs/5MrPmMoV3Bo1AGCgEI+oAQD9UNQAELiiFrWZ/dDMjpnZ3n5jl5nZG2b2fvT5i/2+tjZ6n8ZmM6stcq51ZtZqZu9FH7cnkOtKM/uZme0zsyYzeyQaT3TOhsiV6JyZ2RfM7D/NbFeU68+i8aTnK1uuxB9j0b5SZtZoZq9G1xP/mcySK/H5MrMWM9sT7b8+Got/vty9aB+SFkuaL2lvv7EnJT0eXX5c0vejyzMl7ZJ0gaRpkg5IShUx1zpJf5Jh22LmmiJpfnT5Ykn/E+0/0TkbIleic6b0m1xcFF0ukfSupK8GMF/ZciX+GIv296ikf5D0anQ98Z/JLLkSny9JLZImDRqLfb6KekTt7v8m6fig4bskbYwub5S0tN/4S+7+mbt/KGm/0u/fWKxc2RQzV5u774wufyppn9Jvg5bonA2RK5ti5XJ3PxFdLYk+XMnPV7Zc2RTtMWZmV0j6mqTnB+0/0Z/JLLmyKVquIfYf63yFsEY92d3bpHQBSPqVaDyn92qM2dfNbHe0NNL750wiucysUlK10kdjwczZoFxSwnMW/bn8nqRjkt5w9yDmK0suKfnH2NOSviWpp99Y4vOVJZeU/Hy5pNfNrMHMVkVjsc9XCEWdTU7v1Rij5yRNlzRPUpukH0TjRc9lZhdJ2izpG+7+y6E2zTAWW7YMuRKfM3fvdvd5Sr9l3FfMbPYQmyedK9H5MrM7JB1z94Zcb5JhrJi5En98SVro7vMl3SbpYTNbPMS2BcsVQlEfNbMpkhR9PhaNx/5ejUNx96PRD1ePpL/R2T9ZiprLzEqULsMX3H1LNJz4nGXKFcqcRVk6JG2TtEQBzFemXAHM10JJd5pZi6SXJN1oZj9R8vOVMVcA8yV3Pxx9PibpH6MM8c9XHAvuwyzGV2rgk3brNXAh/sno8iwNXIj/QPE+cTE415R+l7+p9FpTUXMp/Rv57yU9PWg80TkbIleicyapXFJZdLlU0nZJdwQwX9lyJf4Y67f/G3T2SbsgfiYz5Er68XWhpIv7XX5b6QOB2OcrtgnO8o2+qPSfLF1K/7b5fUmXS/pXSe9Hny/rt/0TSj9T2izptiLn+rGkPZJ2S/qnQQ+SYuVapPSfSrslvRd93J70nA2RK9E5kzRHUmO0/72Svh2NJz1f2XIl/hjrt78bdLYQE/+ZzJIr6cfXVUoX7y5JTZKeKNZ88S/kABC4ENaoAQBDoKgBIHAUNQAEjqIGgMBR1AAQOIoaAAJHUQNA4P4f00do0LlAi64AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "\n", "fig, ax = plt.subplots()\n", "ax.set_title('Titre')\n", "line2, = ax.plot(n, y2, 'o', lw=2, label='n au cube')\n", "#plt.xscale('log')\n", "leg = ax.legend(fancybox=True, shadow=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## comparaison $n^2$ et $n^3$" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEICAYAAAB25L6yAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAVe0lEQVR4nO3df5DU9X3H8deb+2EOiJyEK6PABEIrEsjBwRkjGJKI/FCDcYwC7ZCxsZFOqpjEFhN0YK7M2DRiGkOmcaQ2gSapDgJVcRLRqqitot5xcEDolRBPfuNZwpnAEZa7d//YBe7H7rELu/v93N3zMXOz+/3sd3df+5m9F9/77pf9mrsLABCuPlEHAAB0jaIGgMBR1AAQOIoaAAJHUQNA4ChqAAgcRY0eycx2mNnno84BZENh1AGA82Fmf2iz2FfSHyW1JJb/2t3HtFm3StKfuvu8/CUEsoeiRrfk7v1PXzezBklfc/f/PJ/HMjOTZO7emqV4QFax6wM9kpk1mNl1ZjZT0v2S5pjZH8xsa+L2jWb2oJn9t6Tjkj5hZleY2YtmdsTM6s1sdpSvATiNLWr0aO7+vJn9g5Lv+viKpOsl1UvqJ2m7pCWJsXJJL5jZDnffkc/MQEdsUaM3W+nuO9z9lKSZkhrc/afufsrdN0taK+nWaCMCbFGjd9vb5vrHJV1lZkfbjBVK+ll+IwGdUdToDVJ9RWTb8b2SXnX3aXnIA2SEXR/oDQ5LGm5mXb3fn5N0uZl9xcyKEj9XmtnoPGUEUqKo0Rs8lbj8PzPbnGwFd/+9pOmS5ko6IOmQpO9JuigvCYEuGCcOAICwsUUNAIGjqAEgcBQ1AASOogaAwOXkOOpBgwb58OHDc/HQANAj1dTUfODuZcluy0lRDx8+XNXV1bl4aADokczsvVS3sesDAAJHUQNA4ChqAAhc3r6U6eTJk9q9e7eOHz+er6fs8fr27auRI0equLg46igAcihvRb17926VlpZq1KhR6tOHDfkL1draqsOHD2vXrl0aPXo0cwr0YHn77T5+/LgGDx5MoWRJnz59NHjwYDU3N+upp55Sc3Nz1JGA3qtutfSDsVJVafyybnVWHz6vrUlJZ1efPn1kZjp06JBef/31qOMAvVPdamn9PVLTXkkev1x/T1bLmubsJh577DH97ne/S3pb//799cEHH+Q5EQBJ0ktLpViHv2hjzfHxLKGou4GlS5dq4MCBuuSSS5LebmZqbW3NcyoAkqSmfZmNn4dgT8X1dO1+LdtQrwNHm3VZaYkWzhilmyuGRB0rZ06dOqXCwsKky0uWLIkqFoBzGTA0sdsjyXiWBLlF/XTtfi1at037jzbLJe0/2qxF67bp6dr95/2YDQ0NGj16tO68806NGTNG06dPT/oB3Pr163XVVVepoqJC1113nQ4fPixJqqqq0sMPP3xmvbFjx6qhoaHT/Z9//nlNmDBB48aN09SpUyVJb7/9tiZNmqSKigpNmjRJ9fX1kqSVK1fqtttu06xZszR9+vROy8eOHdMdd9yhK6+8UhUVFXrmmWfO+/UDyJGpS6SikvZjRSXx8SwJsqiXbahXc6yl3VhzrEXLNtRf0OPu2rVLd911l3bs2KHS0lKtXbu20zrXXHONNm3apNraWs2dO1cPPfRQ2o/f2NioO++8U2vXrtXWrVv11FPxM0BdccUVeu2111RbW6ulS5fq/vvvP3OfN998U6tWrdLLL7/cafnBBx/Utddeq3feeUevvPKKFi5cqGPHjl3QHADIsvLZ0qzl0oBhkix+OWt5fDxLgtz1ceBo8kPNUo2na8SIERo/frwkaeLEiUm3iPft26c5c+bo4MGDOnnypEaMGJH242/atElTpkw5c5+BAwdKkpqamnT77bdr165dMjPFYrEz95k2bdqZ9Touv/DCC3r22WfPbMmfOHFCe/bs0ejRnG8VCEr57KwWc0dBblFfVlqS0Xi6Lrro7HlKCwoKdOrUqU7rLFiwQHfffbe2bdumxx57TCdOnJAkFRYWtvvA7vR4W+4uM+s0vnjxYn3hC1/Q9u3btX79+nb37devX7t12y67u9auXastW7Zoy5YtlDTQSwVZ1AtnjFJJUUG7sZKiAi2cMSrnz93U1KQhQ+IfWq5aterM+PDhw7V5c/wE1ps3b9a7777b6b5XX321Xn311TO3HTlypNNjrly5Mu0sM2bM0I9+9COdPgFxbW1t5i8IQLcXZFHfXDFE373lUxpSWiKTNKS0RN+95VN5OeqjqqpKt912mz772c9q0KBBZ8a//OUv68iRIxo/frweffRRXX755Z3uW1ZWphUrVuiWW27RuHHjNGfOHEnSfffdp0WLFmny5MlqaWnpdL9UFi9erFgspvLyco0dO1aLFy++8BcIoNux01tr2VRZWekdTxxQU1OjiRMnZv25eruamhpt3bpVxcXFmjdvXtRxAJwnM6tx98pktwW5RQ0AOIuiBoDAUdQAEDiKGgACR1EDQOAoagAIHEUdoYaGBo0dOzbqGAACF25R5/jUNgDQXYRZ1Dk4tU2UX3Pa1X1PnTql22+/XeXl5br11lvPnKW9pqZGn/vc5zRx4kTNmDFDBw8ePO/XDqB7C7Ooc3Rqm6i+5rQr9fX1mj9/vurq6nTxxRfrxz/+sWKxmBYsWKA1a9aopqZGd9xxhx544IGMXiuAniPIrznN1altovqa064MGzZMkydPliTNmzdPy5cv18yZM7V9+3ZNmzZNktTS0qJLL7007RwAepYwizpHp7bp+DWnyXZ9LFiwQPfee69uuukmbdy4UVVVVZIu7GtOu7pvx/XNTO6uMWPG6M0330z/xQHoscLc9ZGHU9ukkouvOe3qvnv27DlTyE888YSuueYajRo1So2NjWfGY7GYduzYke2XCqCbCLOo83Bqm1Ry8TWnXd139OjRWrVqlcrLy3XkyBF9/etfV3FxsdasWaNvf/vbGjdunMaPH6833ngj568dQJjS+ppTM/uWpK9JcknbJH3V3Tv/7Z/A15zmD19zCvQMF/Q1p2Y2RNI9kirdfaykAklzsxsRAJBKurs+CiWVmFmhpL6SDuQuEgCgrXMWtbvvl/SwpD2SDkpqcvcXOq5nZvPNrNrMqhsbG5M+VtsjH3DhmE+gd0hn18clkr4kaYSkyyT1M7NOO0PdfYW7V7p7ZVlZWafH6du3rw4ePEi5ZElra6sOHTqkWCwWdRQAOZbOcdTXSXrX3RslyczWSZok6eeZPNHIkSNVU1OjQ4cOZZ4SScViMe3Zs0etra0qLAzzkHgAFy6d3+49kj5jZn0lNUuaKqm667t0VlxcrBMnTmjTpk0aMGBA0v8Ygsy5uz788EOVl5dHHQVAjpyzqN39LTNbI2mzpFOSaiWtOJ8nmzJligoKCvTee++ppaXlfB4CHRQWFmry5MmqrEx6VA+AHiCt46gzlew4agBAahd0HDUAIFoUNQAEjqIGgMBR1AAQOIoaAAJHUQNA4ChqAAgcRQ0AgaOoASBwFDUABI6iBoDAUdQAEDiKGgACR1EDQOAoagAIHEUNAIGjqAEgcBQ1AASOogaAwFHUABA4ihoAAkdRA0DgKGoACBxFDQCBo6gBIHAUNQAEjqIGgMBR1AAQOIoaAAJHUQNA4ChqAAgcRQ0AgaOoASBwFDUABC6tojazUjNbY2b/Y2Y7zezqXAcDAMQVprneDyU97+63mlmxpL45zAQAaOOcRW1mF0uaIukvJcndT0o6mdtYAIDT0tn18QlJjZJ+ama1Zva4mfXruJKZzTezajOrbmxszHpQAOit0inqQkkTJD3q7hWSjkn6TseV3H2Fu1e6e2VZWVmWYwJA75VOUe+TtM/d30osr1G8uAEAeXDOonb3Q5L2mtmoxNBUSb/OaSoAwBnpHvWxQNIvEkd8/FbSV3MXCQDQVlpF7e5bJFXmOAsAIAn+ZyIABI6iBoDAUdQAEDiKGgACR1EDQOAoagAIHEUNAIGjqAEgcBQ1AASOogaAwFHUABA4ihoAAkdRA0DgKGoACBxFDQCBo6gBIHAUNQAEjqIGgMBR1AAQOIoaAAJHUQNA4ChqAAgcRQ0AgaOoASBwFDUABI6iBoDAUdQAEDiKGgACR1ED6KxutfSDsVJVafyybnXUiXq1wqgDAAhM3Wpp/T1SrDm+3LQ3vixJ5bOjy9WLsUUNoL2Xlp4t6dNizfFxRIKiBtBe077MxpFzFDWA9gYMzWwcOUdRA2hv6hKpqKT9WFFJfByRSLuozazAzGrN7LlcBgIQsfLZ0qzl0oBhkix+OWs5HyRGKJOjPr4haaeki3OUBUAoymdTzAFJa4vazIZKulHS47mNAwDoKN1dH49Iuk9Sa6oVzGy+mVWbWXVjY2NWwgEA0ihqM/uipPfdvaar9dx9hbtXuntlWVlZ1gICQG+Xzhb1ZEk3mVmDpCclXWtmP89pKgDAGecsandf5O5D3X24pLmSXnb3eTlPBgCQxHHUABC8jL6Uyd03StqYkyQAgKTYogaAwFHUABA4ihoAAkdRA0DgKGoACBxFDQCBo6gBIHAUNQAEjqIGgMBR1AAQOIoaAAJHUQNA4ChqAAgcRQ0AgaOoASBwFDUABI6iBoDAUdQAEDiKGgACR1EDQOAoagAIHEUNAIGjqAEgcBQ1AASOogaAwFHUABA4ihoAAkdRA0DgKGoACBxFDQCBo6gBIHAUNQAEjqIGgMBR1AAQuHMWtZkNM7NXzGynme0ws2/kIxgAIK4wjXVOSfpbd99sZh+VVGNmL7r7r3OcDQCgNLao3f2gu29OXP+9pJ2ShuQ6GAAgLqN91GY2XFKFpLeS3DbfzKrNrLqxsTE76QAA6Re1mfWXtFbSN939w463u/sKd69098qysrJsZgSAXi2tojazIsVL+hfuvi63kQAAbaVz1IdJ+ldJO939n3IfCQDQVjpb1JMlfUXStWa2JfFzQ45zAQASznl4nrv/lyTLQxYgd+pWSy8tlZr2SQOGSlOXSOWzo04FpCWd46iB7q1utbT+HinWHF9u2htflihrdAv8F3L0fC8tPVvSp8Wa4+NAN0BRo+dr2pfZOBAYiho934ChmY0DgaGo0fNNXSIVlbQfKyqJjwPdAEWNnq98tjRruTRgmCSLX85azgeJ6DY46gO9Q/lsihndFlvUABA4ihoAAkdRA0DgKGoACBxFDQCBo6gBIHAUNQAEjqIGgMBR1AAQOIoaAAJHUQNA4ChqAAgcRQ0AgaOoASBwFDUABI6iBoDAUdQAEDiKGgACR1F3V3WrpR+MlapK45d1q6NOBCBHOGdid1S3Wlp/jxRrji837Y0vS5wXEOiB2KLujl5aerakT4s1x8cB9DgUdXfUtC+zcQDdGkXdHQ0Ymtk4gG6Nou6Opi6RikrajxWVxMcB9DgUdXdUPluatVwaMEySxS9nLeeDRKCH4qiP7qp8NsUM9BLhbFFzXDAAJJXWFrWZzZT0Q0kFkh5393/Maoq61Tr1zAIVtpyILzftjS9LbDWm8HTtfi3bUK8DR5t1WWmJFs4YpZsrhkQdK1jMV2aYr8zker7OuUVtZgWS/lnS9ZI+KenPzeyTWUsg6fivlpwt6YTClhM6/is+HEvm6dr9WrRum/YfbZZL2n+0WYvWbdPTtfujjhYk5iszzFdm8jFf6ez6+LSk37j7b939pKQnJX0pawkkfaT5UEbjvd2yDfVqjrW0G2uOtWjZhvqIEoWN+coM85WZfMxXOkU9RNLeNsv7EmPtmNl8M6s2s+rGxsaMQhxo/VhG473dgaPNGY33dsxXZpivzORjvtIpaksy5p0G3Fe4e6W7V5aVlWUU4vHieTruxe3GjnuxHi+el9Hj9BaXlZZkNN7bMV+ZYb4yk4/5Sqeo90ka1mZ5qKQDWUsgafyN87XE52tf6yC1umlf6yAt8fkaf+P8bD5Nj7FwxiiVFBW0GyspKtDCGaMiShQ25iszzFdm8jFf6Rz18Y6kPzOzEZL2S5or6S+ylkBKfDr6N5qzYSqfMqfh9LzwqXx6mK/MMF+Zycd8mXunvRidVzK7QdIjih+e9xN3f7Cr9SsrK726ujo7CQGgFzCzGnevTHZbWsdRu/svJf0yq6kAAGkJ538mAgCSoqgBIHAUNQAEjqIGgMClddRHxg9q1ijpvfO8+yBJH2QxTraQKzPkygy5MtMTc33c3ZP+b8GcFPWFMLPqVIeoRIlcmSFXZsiVmd6Wi10fABA4ihoAAhdiUa+IOkAK5MoMuTJDrsz0qlzB7aMGALQX4hY1AKANihoAApfXojazn5jZ+2a2vc3YQDN70cx2JS4vaXPbIjP7jZnVm9mMPOeqMrP9ZrYl8XNDBLmGmdkrZrbTzHaY2TcS45HOWRe5Ip0zM/uImb1tZlsTuf4+MR71fKXKFfl7LPFcBWZWa2bPJZYj/51MkSvy+TKzBjPblnj+6sRY7ufL3fP2I2mKpAmStrcZe0jSdxLXvyPpe4nrn5S0VdJFkkZI2i2pII+5qiT9XZJ185nrUkkTEtc/Kul/E88f6Zx1kSvSOVP8bET9E9eLJL0l6TMBzFeqXJG/xxLPd6+kf5f0XGI58t/JFLkiny9JDZIGdRjL+XzldYva3V+TdKTD8JckrUpcXyXp5jbjT7r7H939XUm/UfxEu/nKlUo+cx10982J67+XtFPx81VGOmdd5EolX7nc3f+QWCxK/Liin69UuVLJ23vMzIZKulHS4x2eP9LfyRS5Uslbri6eP6fzFcI+6sHuflCKF4CkP0mMp3VS3Ry728zqErtGTv85E0kuMxsuqULxrbFg5qxDLiniOUv8ubxF0vuSXnT3IOYrRS4p+vfYI5Luk9TaZizy+UqRS4p+vlzSC2ZWY2anzxWY8/kKoahTSeukujn0qKSRksZLOijp+4nxvOcys/6S1kr6prt/2NWqScZyli1JrsjnzN1b3H284uf2/LSZje1i9ahzRTpfZvZFSe+7e026d0kyls9ckb+/JE129wmSrpd0l5lN6WLdrOUKoagPm9mlkpS4fD8xnvOT6nbF3Q8nfrlaJf2Lzv7JktdcZlakeBn+wt3XJYYjn7NkuUKZs0SWo5I2SpqpAOYrWa4A5muypJvMrEHSk5KuNbOfK/r5SporgPmSux9IXL4v6T8SGXI/X7nY4X6OnfHD1f5Du2VqvyP+ocT1MWq/I/63yu0HFx1zXdrm+rcU39eU11yK/4v8b5Ie6TAe6Zx1kSvSOZNUJqk0cb1E0uuSvhjAfKXKFfl7rM3zf15nP7QL4ncySa6o31/9JH20zfU3FN8QyPl85WyCU7zQJxT/kyWm+L82fyXpY5JekrQrcTmwzfoPKP5Jab2k6/Oc62eStkmqk/RshzdJvnJdo/ifSnWStiR+boh6zrrIFemcSSqXVJt4/u2SliTGo56vVLkif4+1eb7P62whRv47mSJX1O+vTyhevFsl7ZD0QL7mi/9CDgCBC2EfNQCgCxQ1AASOogaAwFHUABA4ihoAAkdRA0DgKGoACNz/A2rKOviP3bS8AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "def f12(x):\n", " return 8.86*10**(-8) * x**2 - 6.692*10**(-6)*x -2.06*10**(-4)\n", "y12 = [f12(k) for k in n]\n", "\n", "fig, ax = plt.subplots()\n", "ax.set_title('Titre')\n", "line1, = ax.plot(n, y1,'o', lw=2, label='n au carré')\n", "line2, = ax.plot(n, y2, 'o', lw=2, label='n au cube')\n", "#plt.xscale('log')\n", "leg = ax.legend(fancybox=True, shadow=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 2 }